
Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

263

WaVAEtable Synthesis

Jeremy Hyrkas�

University of California San Diego
jhyrkas@ucsd.edu

Abstract. Timbral autoencoders, a class of generative model that learn the tim-
bre distribution of audio data, are a current research focus in music technology;
however, despite recent improvements, they have rarely been used in music com-
position or musical systems due to issues of static musical output, general lack
of real-time synthesis and the unwieldiness of synthesis parameters. This project
proposes a solution to these issues by combining timbral autoencoder models
with a classic computer music synthesis technique in wavetable synthesis. A
proof-of-concept implementation in Python, with controllers in Max and Super-
Collider, demonstrates the timbral autoencoder’s capability as a wavetable gener-
ator. This concept is generally architecture agnostic, showing that most existing
timbral autoencoders could be adapted for use in real-time music creation today,
regardless of their capabilities for real-time synthesis and time-varying timbre.

Keywords: Generative models, neural networks, sound synthesis

1 Introduction

A generative model can be broadly defined as a probabilistic method that learns a dis-
tribution based on a corpus of training data such that examples similar to the training
data can be generated by sampling from the learned distribution [1]. Recently, the term
has been largely associated with deep artificial neural networks that generate images,
video, speech, or examples from a variety of other domains. Music researchers have
utilized neural network generative models as a technology for sound synthesis in music
(for example, the groundbreaking NSynth neural synthesizer [2]). One such approach
is the timbral autoencoder (i.e. [3][4][5]). In this type of model, networks learn au-
dio representations in the frequency domain, resulting in models that synthesize sounds
based on a learned latent space of their training data, usually monophonic instruments.
These timbral models target the problem of novel sound generation, particularly in a
synthesizer setting [3]. Ideally, musicians can find sounds that interpolate the timbre
of multiple instruments, or sounds that do not invoke any recognizable instrument at
all. Recently, the variational autoencoder (VAE) [6] has been favored (an overview of
VAEs for musical audio can be found here [1]). Once trained, a user may provide latent
parameters to the VAE to generate new examples.

There are a number of benefits to training these models. The training data is rep-
resented in the frequency domain, which behaves better than time-domain represen-
tations with common loss functions that do not account for phase shift. Additionally,
� Special thanks to Karl Yerkes (MAT, University of California Santa Barbara) for his great help

with SuperCollider and OSC implementations.



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

264

some models render audio in near real-time [3] due to a sufficiently small architecture,
as opposed to more complex audio models such as the NSynth autoencoder [2]. More
recent efforts have shown that the models can learn the timbre of the training data in
a way that sufficiently disentangles the pitch of the training examples, even when the
training data does not contain pitch labels [4].

While integration of these models in music systems seems imminent, there are some
practical drawbacks that remain unaddressed. Learning problems in the frequency do-
main largely concern magnitude spectra, meaning that phase reconstruction is neces-
sary before the audio can be rendered in the time domain. Models that learn on mag-
nitude Fourier transforms can use phase reconstruction algorithms that run in real-time
[3]; however, models that use alternate spectral representations [5] rely on non-real-
time algorithms such as the Griffin-Lim method [7]. Finally, recurrent connections are
largely absent in timbral autoencoder models, meaning models are limited to generating
a cyclic waveform per selection of latent parameters.

1.1 Motivation and Project Overview

This project aims to integrate a neural network synthesis engine implemented in Python
with more general synthesis and composition engines in Cycling ’74’s Max software
and SuperCollider (SC). While many of the aforementioned research efforts focus on
improved synthesis in the form of fidelity, realism, or expressiveness, this project takes
the philosophy that current synthesis methods are already usable in music creation when
combined with existing and well understood computer music methods.

Because most timbral autoencoders produce inherently cyclic audio, we can con-
ceptually treat them as oscillators. Many timbral autoencoders are not conditioned on
pitch, precluding them from being used as oscillators in a traditional sense. Addition-
ally, models that do not use real-time phase reconstruction cannot be used to synthesize
audio in real-time like a traditional oscillator. Therefore, incorporating these models
into real-time engines requires a method that utilizes pre-rendered cyclic audio signals.

The most straightforward candidate for such a synthesis system is wavetable syn-
thesis [8], a scheme in which cyclic waveforms are stored and synthesized by reading
and interpolating values at a given frequency. This project recasts timbral autoencoders
as wavetable generators and provides methods for sampling and saving wavetables from
their output. Proof-of-concept software is provided in Max and SC, demonstrating how
timbral autoencoders as wavetable generators can be used in performance and compo-
sition, and can be sonically extended using methods such as wavetable interpolation
and frequency-modulated playback. We refer to the process of incorporating timbral
autoencoders, often VAEs, into a wavetable extraction framework and combining them
with music synthesis software as WaVAEtable synthesis.

1.2 Related Methods

NSynth [2] is an early musically focused generative model for audio. NSynth’s unique
architecture allows it to iteratively create time-domain audio, resulting in audio with
time-varying timbre. This result is arguably more musically useful than cyclic wave-
forms, but the model is expensive to train on most computers and slow to render audio.



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

265

Fig. 1. Architecture of the basic VAE trained for this project. The dotted blue rectangle on the left
contains the encoder and solid-lined red rectangle on the right contains the decoder. The dotted
line between encoder and decoder represents a sampling operation. The input and output data are
magnitude spectra extracted from the STFT of instrumental audio.

Neural Wavetable [9] is perhaps the most similar project to the one presented here.
The project uses an autoencoder to learn time-domain wavetables and interpolate be-
tween them. Interpolation is performed on the latent encoding of two target wavetables.
This is conceptually similar to timbral autoencoders, with the exceptions that Neural
Wavetable operates in the time-domain as opposed to the frequency-domain, and that
the model is explicitly trained on wavetables. Because the method proposed here ex-
tracts wavetables from a broad collection of generative models, it is a more general
method than the Neural Wavetable method. Neural Wavetable’s underlying model can-
not generate audio in real-time, so the associated plug-in uses pre-rendered wavetables
for interpolation.

A more thorough survey of generative models for audio can be found here [1].

2 WaVAEtable Synthesis

2.1 Sample neural network architecture and training

This software exploits the architecture of timbral autoencoders, wherein user-provided
encodings produce spectral audio that is converted to time-domain audio. To keep the
design aimed towards utilizing existing models, this software uses a simple VAE (de-
picted in Figure 1) implemented in PyTorch [10] that encapsulates the most basic gen-
erative capabilities shared by timbral autoencoder models. The data are positive fre-
quency bins from Short-time Fourier Transform (STFT) frames of audio in the NSynth
dataset [2]. The architecture model is shown in Figure 1. After training, the 16 latent pa-
rameters are used to synthesize the magnitudes of the positive frequencies of an STFT
frame. These frames are reflected and time-domain audio is added using the Griffin-
Lim algorithm [7]. The decoder-to-audio process is detailed in Figure 2. Adjusting the
architecture and hyperparameters of this model could constitute a separate research ef-
fort, but are not critical to this project as this method aims to be as architecture- and
model-agnostic as possible.



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

266

Fig. 2. Decoder to audio process: latent space parameters (z) are provided to the decoder, depicted
as a red triangle. Output from the fixed z is used to create a magnitude STFT. The Griffin-Lim
algorithm for phase reconstruction then yields in time-domain audio.

2.2 Wavetable generation

Many synthesis engines use a default wavetable size of 512 samples. If a given tim-
bral autoencoder is conditioned on pitch, the model could generate output at a specific
fundamental frequency f0 such that the period of the waveform is 512 samples given
the sampling rate fs by setting f0 = fs

512 . However, this setup is not always feasible.
Many timbral autoencoder models, including the model used here, are not conditioned
on pitch, resulting in a generative latent space that changes both timbre and fundamental
frequency simultaneously. Even those models that disentangle pitch from timbre may
be conditioned on discrete pitches (such as MIDI notes), and in general may not be able
to generate the desired f0. For example, the sampling rate of the NSynth data set is 16
kHz, so a waveform with period 512 samples has f0 = 31.25 Hz, well below reasonable
pitches in most music data sets.

Therefore, wavetables are created using a heuristic wavetable extraction algorithm
that relies on f0 estimation and resampling. Given a latent encoding from a user, the
decoder is invoked to create a periodic waveform (see Figure 2). We use the pYin [11]
algorithm to estimate the fundamental frequency of each frame. The pYin algorithm is
probabilistic and determines the likelihood of each frame containing a pitched sound.
If a sufficient number of frames are found likely to be pitched, we predict the f0 of the
waveform to be the mean of the f0 of the voiced frames; if this is not the case, it is likely
that the provided encoding is very dissimilar from examples learned in the training data
and the resulting sound may be noisy and therefore unpitched.

Given the fs of a model and the predicted f0 of the model’s output based on the
user’s inputs, we resample the output to a new sampling frequency round(f0 ∗ 512),
which results in a waveform whose period is very close to 512 samples. Finally, samples
are extracted from the new waveform starting from some position that is very near 0 to
avoid an impulse at the beginning of the wavetable. Overall, the extraction method is
subject to failures in f0 estimation (usually octave errors) and resampling artifacts, but is
architecture agnostic and can be adapted to any timbral autoencoder (or any generative
model whose output is sufficiently periodic).

2.3 Synthesizer implementations

Two prototype synthesizers were created as a proof-of-concept to demonstrate multiple
musical uses for VAE wavetables. First, a simple polyphonic synth patch was created



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

267

in Cycling ’74’s Max software. This patch assigns incoming MIDI notes to one of five
voices. Here, random wavetables are pre-rendered using a Python script and can be
regenerated by the user. Communication is done via the file system with wavetables
saved and loaded from .WAV files. This patch also combines wavetable synthesis with
FM synthesis, with MIDI CC controls controlling the wavetable assignment and FM
controls of the wavetable playback speed. This patch, while simple, demonstrates the
viability of using timbral autoencoder output in real-time performance.

A more complex system was constructed in SC with the goals of user interactivity
with the underlying model, more complex synthesis methods and algorithmic compo-
sition. Users control the latent parameters of the VAE described in Section 2.1 using a
custom GUI created in SC. The user can listen to a wavetable for a given setting, and
if it is interesting for their compositional purposes, save it. All communication between
Python and SC is performed locally using OSC, so no file system interaction is required.
Figure 3 shows the interface for manipulating and storing wavetables.

Once stored, wavetables are played back using wavetable synthesis and wavetable
interpolation. Users can also incorporate other SC generators to create complex synthe-
sizer definitions (SynthDefs) with the generated wavetables at their core. We provide an
example SynthDef that can be controlled by a MIDI controller, or used in algorithmic
composition. A small etude is included in the provided software to demonstrate this
capability. All Max, SC, and Python code, as well as the accompanying VAE model,
are available at https://github.com/jhyrkas/wavaetable.

2.4 Incorporation of existing timbral autoencoders

The neural network used in this project is not intended to be a standalone model, but
acts as a basic stand-in for existing timbral autoencoder models (i.e. [3][4][5]), most of
which have more complex architectures and are capable of more pleasing musical audio.
To test the viability of the WaVAEtable synthesis approach, the Python script to inter-
face with SC was adapted and added to a fork of the CANNe [3] synthesizer GitHub,
available at https://github.com/jhyrkas/canne_synth. The only major
changes to the script involved reinterpreting the latent space parameters sent from SC,
as CANNe’s latent space only contains 8 variables and expects a different range of
values. With just these minor adjustments, the CANNe model can now be used as a
wavetable generator in WaVAEtable synthesis. We posit that other timbral autoencoders
can also be easily adapted, so long as they offer an encoding-to-audio synthesis method.

3 Future Work and Conclusion

This work offers a path towards incorporating an existing body of generative models
into music systems. The proposed method allows for integrating models regardless of
underlying architecture and real-time viability, and allows for a greater reuse of interest-
ing latent parameters, which can be cumbersome to discover. Synth design and model
improvement can thus be treated as complementary and orthogonal research avenues.

WaVAEtable synthesis may approach the practical limits of incorporating static gen-
erative models for audio in more traditional electronic music synthesis. Future timbral



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

268

Fig. 3. Left: Max interface to playback wavetables, controlled via MIDI controller. Right: Super-
Collider interface to control decoder parameters, listen to and store wavetables for playback.

models that generate audio in real-time and are conditioned on pitch could function as
a true oscillator in a synthesis system. Moving beyond these static timbral models to
time-varying models allows for new combinations of generative models and synthesis
methods, such as neural sample-generation and neural granular synthesis.

References

1. Huzaifah, M., Wyse, L.: Deep Generative Models for Musical Audio Synthesis. In: Handbook
of Artificial Intelligence for Music: Foundations, Advanced Approaches, and Developments
for Creativity. Springer (2020)

2. Engel, J., Resnick, C., Roberts, A., Dieleman, S., Norouzi, M., Eck, D., Simonyan, K.: Neural
Audio Synthesis of Musical Notes with WaveNet Autoencoders. In: Proceedings of the 34th
International Conference on Machine Learning-Volume 70 (2017)

3. Colonel, J., Curro, C., Keene, S.: Autoencoding Neural Networks as Musical Audio Synthe-
sizers. In: Proceedings of the 21st International Conference on Digital Audio Effects (2018)

4. Luo, Y. J., Cheuk, K. W., Nakano, T., Goto, M., Herremans, D.: Unsupervised Disentangle-
ment of Pitch and Timbre for Isolated Musical Instrument Sounds. In: Proceedings of the 2020
International Society of Music Information Retrieval Conference (2020)

5. Esling, P., Chemla–Romeu-Santos, A., Bitton, A.: Generative timbre spaces: regularizing vari-
ational auto-encoders with perceptual metrics. In: Proceedings of the 21st International Con-
ference on Digital Audio Effects (2018)

6. Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes. In: arXiv preprint,
arXiv:1312.6114 (2013)

7. Griffin, D., Lim, J.: Signal Estimation from Modified Short-Time Fourier Transform. IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 32, num. 2, 236–243 (1984)

8. Bristow-Johnson, R.: Wavetable Synthesis 101, A Fundamental Perspective. In: Proceedings
101st Convention of the Audio Engineering Society (1996)

9. Hantrakul, L., Yang, L. C.: Neural Wavetable: A Playable Wavetable Synthesizer Using Neu-
ral Networks. In: Workshop on Machine Learning for Creativity and Design (2018)

10. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison,
A., Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: Proceedings of the 31st
Conference on Neural Information Processing Systems (2017)

11. Mauch, M. Dixon, S.: pYIN: A Fundamental Frequency Estimator Using Probabilistic
Threshold Distributions. In: Proceedings of the 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (2014)




