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Abstract. In this work, we focus on the problem of automatic instrument recog-
nition (AIR) using supervised learning. In particular, we follow a state-of-the-art
AIR approach that combines a deep convolutional neural network (CNN) archi-
tecture with an attention mechanism. This attention mechanism is conditioned on
a learned input feature representation, which itself is extracted by another CNN
model acting as a feature extractor. The extractor is pre-trained on a large-scale
audio dataset using discriminative objectives for sound event detection. In our
experiments, we show that when using log-mel spectrograms as input features in-
stead, the performance of the CNN-based AIR algorithm decreases significantly.
Hence, our results indicate that the feature representations are the main factor that
affects the performance of the AIR algorithm. Furthermore, we show that various
pre-training tasks affect the AIR performance in different ways for subsets of the
music instrument classes.
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1 Introduction

Real world music recordings often consist of multiple music instruments that can be
active simultaneously. Detecting individual instruments or instrument families is an
important research problem in areas such as machine listening, music information re-
trieval (MIR), and (music) source separation. The problem of detecting and categorizing
the active instruments is often referred to as automatic instrument recognition (AIR).
Recent approaches to AIR are mostly based on deep convolutional neural networks
(CNNs) [1–5].

One commonality in deep learning approaches for AIR is that they consist of three
modules [1, 3–5], namely the pre-processing, embedding, and classification modules.
The first module pre-processes and transforms the respective input music waveform
into a compact signal representation. The most common transforms are the short-time
Fourier transform (STFT) and related filter-banks such as Mel-bands [1, 3, 4, 6] and
the constant-Q transform (CQT) [7]. Common operations as pre-processing steps are
harmonic and percussive separation [3] as well as logarithmic magnitude compression
and data normalization or standardization [4].
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The second module, referred to as embedding, accepts as input the pre-processed
and transformed music waveform from the first module. It yields a feature representa-
tion that is used to condition the last module, i. e., the classification module, which is
responsible for computing the posterior, i.e., the label probability, of the correspond-
ing instrument classes (e.g., “electric guitar” or “piano”). Most often, the embedding
and classification modules are learned jointly during a training procedure that is based
on supervised learning, in which the class labels for each recording are given from a
curated dataset [1, 4].

Regarding the embedding module, a common ingredient in the related literature is
the usage of CNNs [1, 3, 4] and, more recently, CNN-based attention mechanisms [5,
8]. The approaches employing attention mechanisms are experimentally shown to yield
state-of-the-art results, and it is assumed that the attention mechanism is responsible for
the success of the methods. However, the studies presented in [5] and [8] condition the
attention mechanism on a feature representation that is computed using a pre-trained
CNN: That CNN, in particular the VGGish network [9], is initially trained for audio
event detection (AED) in a supervised way using general audio signals and classes
obtained from Audio Set [10], before being applied on the task of AIR. This means
that the attention-based approaches to AIR make use of transfer learning [11, 12]. This
differs from other approaches, which learn the representations jointly for the task of
AIR [1, 3, 4]. Therefore, it could be argued that the observed increase in performance
of such attention-based models rather needs to be attributed to the discriminative power
of the feature representations from the CNN, which was previously learnt from more
general audio signals instead of solely music signals [13].

In this work, we analyze the impact of the role of learning feature representations
for an attention mechanism for music instrument classification performance. It should
be noted that it is not our intention to conduct a comparative study on attention mecha-
nisms versus representation learning, as we believe that both are equally beneficial for
the task at hand. Instead, we aim to show that deep learning approaches to AIR can
substantially benefit from employing representations that are learned using reconstruc-
tion or alignment optimization objectives [14] as well as datasets that contain general
purpose audio signals [10].

To answer our research question, we focus on the attention-based model presented
in [5], which is trained and tested on the respective subsets of the OpenMIC dataset [15].
To investigate the influence of different feature representations, we experiment with
various commonly used filter-banks, such as (log) Mel-spectrograms, and learned rep-
resentations. For the latter case, different datasets and optimization objectives are used
to pre-train the CNN responsible for yielding the feature representations. These are
described in sections 3 and 4.1, respectively.

2 Attention-based Model

The attention-based model for AIR from the work presented in [5] is illustrated in Fig. 1
embedded into our general experimental pipeline as described in the following.
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Fig. 1. An illustration of our experimental pipeline and the method presented in [5] that employs
an attention mechanism and a pre-trained CNN (VGGish) for computing the feature representa-
tion(s).

2.1 Input pre-processing

An input time-domain music signal is first re-sampled at a sampling frequency of 16
kHz and then transformed into a time-frequency representation using the short-time
Fourier transform (STFT). The parameters for the STFT are a window size of 25 ms
using the Hann function and a hop-size of 10 ms. Each windowed segment is zero-
padded to 512 samples. From the magnitude of the STFT, a Mel-spectrogram with
64 mel bands is computed. We apply log-magnitude scaling to the Mel-spectrogram,
yielding a final input spectral representation denoted as “Log-Mel” in Fig. 1.

2.2 Post-processing & Representation

The Log-Mel is used to condition the VGGish network presented in [16]. This net-
work comprises six convolutional (conv) blocks followed by three fully-connected feed-
forward (dense) layers (FC). Each conv block consists of a two-dimensional conv layer
(2Dconv), the rectified linear unit (ReLU) activation function, and a two-dimensional
max-pooling operation. The numbers of kernels across the conv blocks are {64, 128,
256, 256, 512, 512}. The kernel sizes for the conv and max-pooling operations in all
conv blocks are 3×3 and 2×2, respectively, and the stride size is set to 1. Furthermore,
zero-padding is applied to preserve the size of the intermediate latent representations
(activation maps), which are computed using the convolutions.

The outputs of each kernel in the last conv block are concatenated to a vector
and then given as input to the first FC. The number of output units in each FC is
{4096, 4096, 128}, respectively. The ReLU activation function is used after each FC.
The output of the VGGish is a feature representation that summarizes approximately
one second of spectral information into a single embedding vector [16].

This output representation is then post-processed by applying a whitening transform
using principal component analysis (PCA). The bases for the PCA are pre-computed
from the audio signals’ corresponding representation obtained by the VGGish [15, 16]
using the training subset of Audio Set [10]. This whitened feature representation is 8-bit
quantized and mapped to the range of [0, 1].
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2.3 Additional CNN, Attention Mechanism & Classification

The above representation is processed by a block of 2D CNNs, which precede the atten-
tion module. It consists of three 2Dconv layers with unit stride and a group-normalization
layer. Each layer employs 128 1 × 1-kernels. The output of the group-normalization
layer is then updated by means of residual connections using the information of the
post-processed representation.

The output of the residual connections is given to the attention module that consists
of two 2Dconv layers with kernel size 1×1. The number of kernels in each 2Dconv layer
is equal to the number of classes. The representation is fed to each 2Dconv layer in the
attention module, followed by the application of the element-wise sigmoid activation
function. The output of the conv layer responsible for decoding the attention embedding
is normalized to unit sum with respect to the time-frame information. The output of the
conv layer responsible for the class activity is used to gate the normalized output of the
other conv layer.

Using this attention mechanism, the posterior can be computed by aggregating the
time-information of the output of the attention mechanism, followed by the application
of the hard-tanh function linear in the range of [0, 1], equal to 1 for values > 1, and 0
for negative values. The aggregation is performed due to the weakly annotated labels
contained in OpenMIC [5].

3 Datasets

To optimize the overall model parameters contained in each module described in Sec-
tion 2, a two-stage training scheme is employed. In the first stage, the modules that are
used to compute the feature representation, i. e., as illustrated in green color in Fig. 1,
are pre-trained on a task different from AIR. The second stage uses the pre-trained
modules from the previous stage, and optimizes the rest of the modules, i. e., the yellow
modules illustrated in Fig. 1, using the labels associated with the task of AIR.

Table 1. Usage of different datasets for the respective training stages and objectives. Denoising
from additive noise is indicated by +, and from multiplicative noise as �.

Datasets
1st stage 2nd stage 1st stage objectives
Audio Set OpenMIC General purpose AED
NSynth OpenMIC Textual description, Denoising +/�
Freesound OpenMIC Tag Alignment

For the first stage, we employ the already optimized VGGish embeddings [15]1

pre-trained on the Audio Set [10], and the NSynth [17] and Freesound [18] datasets.
Depending on the dataset for this stage, various pre-training objectives are used (see
Section 4.1). For the second stage, we utilize only OpenMIC [15] for both training and
testing, with the respective subsets used in [5]. Table 1 provides an overview of this.

1 Publicly available under https://github.com/cosmir/openmic-2018
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4 Experimental Procedure

Since the PCA and 8-bit quantization steps in the post-processing of the feature repre-
sentation from the VGGish are irrelevant to the scope of our work, we have excluded
them from our experiments. Instead, a simple normalization to [0, 1] is applied to the
representation during the second stage of training to avoid any crucial performance dis-
crepancies due to the inductive biases of the attention-based method for AIR.

4.1 Pre-training Objectives (First Stage)

This section provides technical details regarding the experimental setup for each em-
ployed objective in the first training stage for optimizing the parameters of the VGGish.
Table 1 gives a summary and overview. For all pre-training learning objectives, the
Adam optimizer is used with a fixed learning rate of 1e−4. Furthermore, the batch size
is set to 64 and an early stopping mechanism is used, which terminates the training
procedure if the used criterion (validation loss) has not improved for five consecutive
iterations throughout the entire training data. The maximum number of training epochs
is 50. All parameters are initialized randomly with samples drawn from a uniform dis-
tribution and scaled using the method presented in [19].

Textual description One investigated pre-training objective is the prediction of the
textual description of a music recording. This objective draws inspiration from the field
of audio captioning, which aims at generating a textual description of an audio signal.
Subject to the goal of this work, we employ the NSynth dataset [17] that contains the
following textual descriptions of the musical notes for every recording in the dataset:
{’bright’, ’dark’, ’distortion’, ’decay’, ’presence’, ’multiphonic’, ’modulation’, ’percus-
sive’, ’reverb’, ’rhythmic’}2. For using the textual descriptions of the music files to train
the VGGish, we employ the Word2Vec language model, presented in [20] and pre-
trained on an English vocabulary, to yield a vector representation of each description.

The Word2Vec model encodes each input word, in our case the textual description,
into a 300-dimensional vector embedding. That vector is used as the target to learn
the parameters of the VGGish. To do so, the output of the VGGish is given as input
to a trainable batch-norm layer and two fully-connected feed-forward (dense) layers
(FC). The first FC employs the non-linear tanh activation function, whereas the second
does not employ any element-wise non-linear functions. The number of units in the
FCs is set to 300. The VGGish network applied on an audio example from the NSynth
dataset yields a single vector, because every NSynth example has a length of one second.
Therefore, it is not necessary to aggregate over temporal information. The parameters
of the VGGish and the following block of batch-norm and FCs are jointly optimized by
minimizing the cosine loss between the predicted and target word-vector embeddings.
The margin hyperparameter in the computation of the cosine loss is set to 0.5.

2 We replaced the original NSynth descriptions {’fast decay’, ’long release’, ’nonlinear env’
’tempo-synced’} with {’decay’, presence’, ’modulation’ ’rhythmic’}, based on the additional
description contained in the dataset. This was due to the fact that the original descriptions
could not be fully encoded by the employed language model.
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Signal Recovery Another training objective we investigate is the recovery of the origi-
nal Log-Mel spectrogram from a corrupted version of the signal. The goal of this objec-
tive is to enforce the representation from the VGGish to encode the relevant information
contained in the Log-Mel. To do so, we employ denoising auto-encoders (DAEs) [21]
and corrupt the Log-Mel in two different ways before it is input to the VGGish: a) with
element-wise additive noise (+) drawn from a Gaussian distribution with zero mean
and 0.1 standard deviation, and b) with element-wise multiplicative noise (�). For the
latter case, random values are drawn from a Bernoulli distribution with p = 0.5.

To decode the representation of the corrupted Log-Mel obtained by the VGGish, we
employ a single block of conv layers containing four transposed one-dimensional conv
(1Dconv) layers. We use transposed 1Dconv layers to be able to recover (upsample back
to) the original dimensionality regarding time-frames, which the VGGish reduced. The
number of kernels and their size in each layer are {128, 64, 64, 64} and {10, 21, 31, 37},
respectively. No zero-padding is applied between each convolution. Furthermore, the
first three 1Dconv layers employ the leaky ReLU activation function with a leaky-factor
of {0.1, 0.25, 0.5}, respectively. The last conv layer uses a linear activation function.
These hyperparameters are chosen experimentally so that a reasonable convergence is
achieved using a random and smaller subset of NSynth.

Audio & Tag Alignment We also explore the objective of aligning audio and asso-
ciated tags. The alignment is achieved by maximizing the agreement of the computed
audio and tag representations using a contrastive loss. We employ the tag encoder and
the corresponding hyperparameters following the method presented in [14], whose goal
is to compute representations that reflect acoustic and semantic characteristics of audio
signals. For the audio encoder, we use the VGGish as discussed above. To match the di-
mensionality used by the audio tag encoder, we apply an affine transformation after the
VGGish. The optimization hyperparameters for this configuration are taken from [14].

4.2 Downstream Instrument Recognition (Second Stage)

After optimizing the parameters of the VGGish with one of the above pre-training ob-
jectives, the VGGish computes the representations of the audio files contained in Open-
MIC. Together with the corresponding labels within OpenMIC, these are then used to
optimize the parameters of the CNN and the attention mechanism. To that aim, we use
the existing splits of OpenMIC for training and validation as employed in [5].

For training, we use the binary cross-entropy loss function. The hyperparameters
for optimization are the Adam algorithm with a learning rate of 5e−4, a batch size
equal to 128 data points and a total number of 350 training epochs, following [5]. After
every iteration over the entire training subset, we evaluate the model performance on
the validation subset. After training, we select the best set of parameters based on the
obtained evaluation score calculated in every iteration.

5 Evaluation

While the total number of audio files per instrument in OpenMIC is balanced, the num-
ber of positive and negative examples varies from one instrument class to another. For
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Fig. 2. F1-scores per instrument class (left) and overall (right) for the attention-based model [5],
conditioned on feature representations computed using the pre-trained VGGish and a randomly
initialized VGGish, and the Log-Mel representation. Note the marginal differences between post-
processing (PP) and normalization (norm.) For VGGish (pre-trained), the Audio Set is used in
the first training stage. For VGGish (random) and Log-Mel, no first training stage is performed.

this reason, we compute the macro-average F1-score (F1-macro) explicitly for positive
and negative classes of every instrument class to evaluate both the parameters of the
attention-based model and the pre-training stages, during both training and validation
phases. During evaluation, the outputs of the classifier are subject to a post-processing
operation that thresholds to zero values below 0.5 and unity values otherwise. Finally,
to determine the benefits of each objective, we test the attention mechanism each time it
has been trained with a different feature representation on the test subset of OpenMIC.

6 Results & Discussion

6.1 Representation Post-processing: Impact on performance

First, we examine the impact of the post-processing steps (see Section 2.2) versus nor-
malization on classification performance, illustrated in Fig. 2. From the F-score, it can
be seen that a simple scaling of the feature representation induces only a marginal per-
formance drop. This allows us to omit further data-dependent post-processing stages
that are irrelevant to our research question, yet might impose some performance discrep-
ancies. From the barplot it can also be observed that without the PCA and quantization
steps the performance increases marginally for the banjo, clarinet, drums, mandolin,
trombone, and voice instrument classes.

6.2 Learned Representations: Impact on Performance

To highlight the impact of the learned representations on the performance for classifying
musical instruments using the discussed attention mechanism, Fig. 2 shows the results
from the attention-based model conditioned on three feature representations. These are
computed from the pre-trained VGGish, a randomly initialized VGGish, and using the
Log-Mel representation directly, i. e., the VGGish acts as an identity operator.
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The Fig. 2 boxplot highlights two observations: First, regarding F1-macro, the dis-
criminative power of the pre-trained VGGish is responsible for obtaining the best clas-
sification performance. Secondly, even an unoptimized (randomly initialized) VGGish
can be used to compute a feature representation that yields a classification performance
comparable to Log-Mel, which is a common feature representation for audio classifi-
cation tasks. However, the barplot demonstrates that Log-Mel outperforms the repre-
sentation from the randomly initialized VGGish for a few musical instruments classes
including cymbals, ukulele, violin, and voice. These two tendencies suggest that the
performance of the attention-based model may be accredited mostly to the discrimina-
tive power of the representation yielded by the VGGish. They also imply that different
objectives or datasets may be used to pre-train the VGGish and yield different results.

Fig. 3 explores this observed direction with the results of the classification perfor-
mance using the various objectives described in Section 4.1. As can be seen in the box-
plot, the pre-training tasks of signal recovery and textual description provide significant
improvements by 0.11 in the F-score over the randomly initialized VGGish. Compared
to the Log-Mel features, marginal improvements of approximately 0.02 are observed.
The barplot shows that each pre-training objective seems to be beneficial for different
musical instrument classes. For example, Textual provides competitive results for the
instrument classes mallet, mandolin, organ, ukulele, and voice, while Den � seems to
work well for piano, ukulele, and violin. Den + provides improvements for percussive
musical instruments such as cymbals and drums. In any case, the VGGish pre-trained
on Audio Set (see Fig. 2) significantly outperforms the best performing models which
employ NSynth.

Plausible explanations for these observed discrepancies lie in the amount of data
and variability within Audio Set, and in the naiveness (in the sense of simple and not
carefully devised) of the pre-training objectives, e.g. the signal recovery. This explana-
tion is underlined when considering the results for the Align objective (Fig. 3), which
employs Freesound and uses a more sophisticated mechanism to exploit the information
of the audio tags.

Fig. 3 shows that the usage of larger corpora in conjunction with a more sophis-
ticated objective (Align) can lead to significant improvements in attention-based AIR
compared to the signal recovery and textual description objectives. Nonetheless, it is
still sub-optimal compared to VGGish pre-trained on Audio Set. The discrepancy in
performance between the two may be accredited to the data availability. However, this
finding highlights the trend that using more general purpose audio datasets can improve
the downstream task of AIR.

7 Conclusions

In this work, we investigated the importance of the role of learning representations w.r.t.
an attention mechanism in music instrument classification algorithms. To that aim, we
focused on the attention-based model for music instrument recognition presented in [5],
and experimentally explored the impact of various feature representations on the perfor-
mance of the attention-based model. Our experimental findings highlight the following
trends: i) Discriminative objectives in conjunction with large scale and general purpose
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Fig. 3. F1-scores per instrument class (left) and overall (right) for the attention-based model [5],
conditioned on feature representations computed from pre-training the VGGish for audio and tag
alignment (Align), textual description (Textual), and signal recovery from additive noise (Den +)
and multiplicative noise (Den �). The first training stage uses Freesound for Align, and NSynth
for Textual, Den + and Den �.

audio corpora are an important factor to be considered in AIR apart from the atten-
tion mechanism, ii) the usage of audio tags for computing representations is an attrac-
tive objective that yields competing performance, and iii) training objectives that take
advantage of general audio and annotations or, respectively, the exploitation of multi-
modalities in a self-supervised manner are emerging directions for future research.
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