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Abstract. This paper presents a framework for music information retrieval tasks
which relate to music similarity. The framework is based on a pipeline consist-
ing of audio feature extraction, feature aggregation and distance measurements,
which generalizes previous work and includes hundreds of similarity models not
previously considered in the literature. This general pipeline is subjected to a
comprehensive benchmark of analogously defined music similarity models over
the task of cover song identification. Experimental results provide scientific ev-
idence for certain preferred combined choices of features, aggregations and dis-
tances, while pointing towards novel combinations of such elements with the po-
tential to improve the performance of music similarity models on specific MIR
tasks.

1 Introduction

Using Music Information Retrieval (MIR) techniques to deal with large sets of music
files has become an increasingly common practice. Working directly with audio and
musical contents has several advantages. MIR methods can provide users the ability to
hum in order to retrieve a melody or to clap to fetch a rhythm, and to use an audio file
as query in a search for similar tracks. The goal of MIR is to make music content more
accessible and in a more intuitive way [1].

Music similarity plays a central role in several MIR tasks. It is often desirable to
define and calculate similarity measures for pairs of music recordings, based on audio
contents and also (derived or annotated) metadata. The use of music similarity measures
on a music dataset provides a solid foundation for navigation, organization, recommen-
dation, and search [2,3].

Since there is no universally agreed-upon formalized concept of general musical
similarity, a fair solution is to look for similarity models which deal with individual as-
pects of music, such as pitch, rhythm, dynamics and timbre, providing tools for melodic,
harmonic, rhythmic, dynamic and timbre-related retrieval tasks, among others. It is im-
portant to state explicitly that the notion of music similarity completely depends on the
context of the retrieval task at hand, which is usually established by the type of dataset
annotations available.
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The literature on audio-based music similarity presents several approaches, includ-
ing the use of traditional information retrieval methods, such as extracting features from
audio recordings and computing their distances within a vector space [4,5,6,7,8,9],
modeling the extracted feature distributions and comparing the corresponding statis-
tical models [10,11,12,13,14,15], feature learning [16,17], metric learning [18,19], and
deep neural networks [20,21].

The framework presented in this paper, which generalizes the first two approaches
above, is based on a conceptual pipeline [3] that breaks down a generic music similarity
model into three components (feature extraction, aggregation and distance computing),
completely specified by the choices of techniques employed in each component. Its
implementation allows the user to freely combine virtually any techniques within each
component, thus providing a direct way of experimenting with a large number of simi-
larity models at once.

This possibility is explored in the context of music similarity tasks, including Cover
Song Identification (CSI) [22], an application which involves identifying songs3 which
are versions (covers) of each other, assuming that versions of a song should have some
common music trait captured by a music similarity model. This paper presents, to the
best of the authors’ knowledge, the first attempt to comprehensively benchmark music
similarity models in music similarity tasks, where hundreds of models not previously
considered in the literature are tested.

The main goal of the experiments here presented is to identify which music similar-
ity models lead to best results for the annotated datasets considered, which have been
compiled for melodic similarity tasks, rhythmic similarity tasks, genre classification
and CSI. Another contribution of this paper is a modular open-source framework4 for
music similarity offering numerous alternatives for feature extraction, aggregation and
distances.

The remainder of the paper is organized as follows: Section 2 presents the music
similarity models considered; Section 3 presents the metrics considered to assess the
discriminating power of the music similarity models; Section 4 presents the experi-
ments, including the selected datasets, the experimental design, the results and their
discussion; Section 5 outlines the conclusions and directions for future work.

2 Music Similarity Framework

The music similarity framework considered here implements the following pipeline:
1. extract audio features; 2. aggregate local features into global features; and 3. compute
the similarities of every pair of audio recordings within a dataset. A triple {extractori,
aggregatorj , distancek} defines a music similarity model, and our main goal is to
benchmark music similarity models, identifying which models lead to best results for
each annotated dataset. Additionally, the models are also applied to datasets designed
for Cover Song Identification (CSI), another similarity-based music retrieval task.

3 in the CSI literature, song is often taken as a synonym of audio recording, regardless of con-
taining singing voice or not.

4 The source code can be found at https://github.com/rppbodo/
music-similarity-framework.
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Papers addressing music similarity related tasks, including CSI, often derive their
similarity measurements from tonal features, such as chromagrams [23,24,7,25], ton-
netz [26], and symbolic melodic sequences [27,28,29,30,31,32]. Also used in music
similarity retrieval tasks are timbre features (e.g., Mel-Frequency Cepstral Coefficients
(MFCC) [4,10,11,13,12,15]), spectral features (e.g., spectral centroid, bandwidth, con-
trast, flatness, etc) [5], rhythmic features (e.g., Rhythm Pattern) [33,6], and ampli-
tude/energy features (e.g., Root Mean Square (RMS)) [34,35].

Among aggregation methods applied in music similarity are simple statistics (such
as mean, standard deviation, skewness and kurtosis, see e.g. [15]), computed from the
features themselves and their 1st order differences, Gaussian Mixture Models [11,12,13],
Vector Quantization [10], Markov Chains [36], Octave and Interval Abstractions [32],
and Pitch Contour (using 3-levels [27] and 5-levels [31]).

The computation of the similarity between two audio recordings is based on a cho-
sen distance applied to the (possibly aggregated) features. Distances relevant for music
similarity are Manhattan [6,8], Euclidean [4,5,7], Cosine [4,9], Longest Common Sub-
sequence based distances [37,38], Levenshtein [39,38], Kullback-Leibler [13,15], Earth
Mover [10,14], and Monte Carlo distances [11,12].

The detailed analysis of the techniques proposed in the music similarity literature
allows us to observe that several papers do not explicitly argue as for why a particular
extractor (or aggregator, or distance) is selected to solve a particular problem. Even less
frequent are arguments about why a specific set of techniques are used in combination
(instead of many other plausible alternatives). This prompted us to try to explore hun-
dreds of combinations of extractors, aggregators, and distances that are not considered
in the literature. It was thus natural to look at this problem as a benchmark, exhaustively
experimenting with a large number of music similarity models.

The current list of music similarity models considered in the implemented frame-
work started out from a large set of features, aggregators and distances appearing in
the related literature, which has been modified by including and collecting techniques,
but also by discarding techniques by many criteria, including the availability of open-
source implementations. The rationale for this specific criterion is to avoid producing
implementations that might substantially differ from their original implementations due
to ambiguous or insufficiently detailed descriptions. A survey of open-source libraries
(such as LibROSA5, Essentia6, and RP extract7) led us to include techniques not pre-
viously considered in the music similarity literature. The same criteria were applied to
aggregator and distance techniques, but in a softer way, since they are usually much
simpler to implement.

Due to compatibility issues, not all available features, aggregators and distances can
be combined. Framewise numerical features may be aggregated using any statistical ag-
gregation methods, GMM and VQ. Symbolic melodic features use only specific aggre-
gators (octave/interval abstractions, pitch contours and Markov chains). Numerical ag-
gregations (single and multivariate Gaussians, GMM, vector quantization, and Markov
chains) can be compared using spatial distances (Euclidean, Manhattan, Chebyshev,

5 http://librosa.github.io/
6 http://essentia.upf.edu/
7 https://github.com/tuwien-musicir/rp_extract
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and cosine). Statistical models can be compared using Kullback Leibler, Earth Mover’s
and Monte Carlo distances, and all symbolic global features can be compared using
LCS-based and Levenshtein distances.

All the compatible combinations of features, aggregators, and distances considered
result in a total of 690 music similarity models; the complete list is available at https:
//rppbodo.github.io/phd/music-similarity-models.html, along with
descriptions of each function.

3 Music Similarity and Cover Song Identification metrics

The most common way to represent a particular music similarity model applied to a
particular dataset is the similarity matrix. The i, j position of this matrix contains the
similarity between the i-th and the j-th tracks in the dataset. It can be defined from a
normalized distance measure as sim(ti, tj) = 1− dist(ti, tj).

Intra-Inter Class Similarity Ratios (IICSR) When the dataset partitions its record-
ings into labeled classes (e.g. genres, composers, melodic or rhythmic patterns), we
may define the quality of a music similarity model using the intra-inter-class similarity
ratio, computed from the similarity matrix according to the following formula:

IICSR(c) =

∑
t1∈Tc

∑
t2∈Tc,t1 �=t2

sim(t1,t2)

(|Tc|2+|Tc|)∑
t1∈Tc

∑
t2∈TC�c

sim(t1,t2)

(|TC�c||Tc|)

, (1)

where Tc is the set of all recordings in class c and TC�c is the complement of Tc. This
measure compares the average similarity within the class c (weighted by the number of
recordings in this class) with the average similarity for pairs of recordings in different
classes (with one member of the pair in class c). If these ratios are greater than 1, the
similarity model may be used to classify pairs of recordings as belonging to the same
class or to different classes. Intra-inter-class similarity ratios may be summarized by
their weighted average:

weighted mean IICSR =
1∑

c∈C |Tc|
∑
c∈C

IICSR(c)× |Tc|, (2)

where each class is weighted by its size (number of recordings).

Mean Rank (MR) The Mean Rank is broadly used in the CSI literature [9,40], where
queries return ranked lists of cover candidates. MR corresponds to the average position
(rank) where the first cover appears in the resulting list.

Mean Reciprocal Rank (MRR) The reciprocal rank (inverse of a rank) [41] converts
index positions to the [0, 1] range, where higher values represent covers higher up in
the list (topmost ranks). MRR corresponds to the average of the reciprocal ranks, and
its inverse may be viewed as the harmonic mean of the original ranks.
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dataset ntracks nclasses annotations
Ballroom 698 10 dance styles names
GTZAN 1000 10 musical genres
IOACAS-QBH 1057 298 ground-truth melody id
Panteli’s melody dataset 3000 30 original melody id
Panteli’s rhythm dataset 3000 30 original rhythm id
MAST 3104 40 ground-truth rhythm id
1517-Artists 3180 19 musical genres
MIR-QBSH 4479 48 ground-truth melody id
FMA-Small 8000 8 musical genres
Covers80 160 80 original song
YouTubeCovers 350 50 original song
Covers1000 1000 395 original song
Mazurkas 2741 49 mazurka id
SHS9K 9286 143 original song

Table 1. Datasets selected to experiment Music Similarity models.

Median Rank (MDR) The MDR is a robust statistic based on the positions of the first
retrieved cover, obtained as the median of the ranks for all queries.

Mean Average Precision (MAP) Kim Falk [42] defines Mean Average Precision in
the context of recommender systems, in which users perform queries, and each query
returns a list of ranked items. Precision at K (P@k) is the number of relevant items
found in the first k items; Average Precision (AP) = 1

m

∑m
k=1 P@k(u), where m is

the length of the ranked list, and u is the user performing the query; Mean Average
Precision (MAP) = 1

|U |
∑

u∈U AP (u), where U is the set of all users.

4 Experiments and Results

4.1 Datasets

In this Section we present the datasets used to benchmark models within our music
similarity framework. The first part of Table 1 presents datasets designed for various
music similarity tasks, and the second part presents the datasets designed specifically
for Cover Song Identification.

Three datasets are designed for melodic similarity tasks: MIQ-QBSH8 and IOACAS-
QBH9 are designed for the query-by-humming task (classes are composed of a refer-
ence melody and a set of recordings of people trying to hum it), and Maria Panteli’s
melody dataset10 uses synthesis to test similarity models against several melodic trans-
formations.

8 http://mirlab.org/dataSet/public/MIR-QBSH-corpus.rar
9 http://mirlab.org/dataSet/public/IOACAS_QBH.rar

10 https://archive.org/details/panteli_maria_melody_dataset
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Three other datasets – Ballroom11, MAST12, and Maria Panteli’s rhythm dataset13

— are designed for tasks related to rhythm similarity. The Ballroom dataset is composed
of recordings from distinct dance styles; MAST has recordings of students successfully
reproducing rhythmic patterns; Maria Panteli’s rhythm dataset is composed of different
synthesized rhythms subjected to several transformations.

The three remaining datasets in the first part of Table 1 — GTZAN14, 1517-Artists15,
and FMA-Small16 -– are annotated with music genres assigned to each recording. Sev-
eral papers in the literature claim that there is a relationship between genre and tim-
bre [43,44,3], and under this assumption, these datasets could be used to test timbre
similarity models.

The second part of Table 1 presents datasets designed for CSI: Covers8017, YouTube-
Covers18, Covers100019, Mazurkas20, and SHS9K21. The latter is a sub-set of the SHS100K22

dataset crafted by the authors by selecting the original songs that have from 50 to 100
covers.

4.2 Experiment Design

Two experiments are proposed. The goal of the first experiment is to check which music
similarity models lead to best results for the selected datasets. In order to accomplish
this we run each one of the 9 datasets considered through our music similarity frame-
work, compute the Intra-Inter Class Similarity Ratio (IICSR) for every annotated class
within the dataset, and finally compute the weighted mean IICSR for each one of the
690 considered models.

The second experiment has a similar goal to the previous one – to check which mu-
sic similarity models lead to the best results – but now with CSI datasets considering the
specific metrics used in this task. We compute similarity matrices using all 690 models
for the 5 CSI datasets, and then calculate the Mean Rank (MR), Mean Reciprocal Rank
(MRR), Median Rank (MDR), and Mean Average Precision (MAP).

4.3 Results

The results of the first experiment are organized as follows: the best weighted mean
IICSR values for each dataset are presented in Table 2, and the entire list of IICSR
values computed in this experiment is published in https://rppbodo.github.
io/phd/experiment_1.html.
11 http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
12 https://zenodo.org/record/2620357
13 https://archive.org/details/panteli_maria_rhythm_dataset
14 http://marsyas.info/downloads/datasets.html
15 http://www.seyerlehner.info/index.php?p=1_3_Download
16 https://github.com/mdeff/fma/
17 https://labrosa.ee.columbia.edu/projects/coversongs/covers80/
18 https://sites.google.com/site/ismir2015shapelets/data
19 http://www.covers1000.net/
20 http://www.mazurka.org.uk/
21 https://rppbodo.github.io/phd/shs9k.html
22 https://github.com/NovaFrost/SHS100K
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dataset mean IICSR extractor aggregator distance
Ballroom 1.33824 spectral bandwidth vector quant. cosine
GTZAN 1.74945 spectral contrast vector quant. cosine
IOACAS-QBH 1.13599 pitch cont. seg. octave abst. lcs circular min
Panteli’s melody 3.12167 pitch cont. seg. interval abst. levenshtein max
Panteli’s rhythm 2.82936 chroma cens vector quant. manhattan
MAST 1.47572 mfcc vector quant. cosine
1517-Artists 1.21584 mfcc vector quant. cosine
MIR-QBSH 1.29421 pitch cont. seg. octave abst. levenshtein circular max
FMA-Small 1.21128 mfcc vector quant. default cosine

Table 2. Results obtained with Music Similarity datasets.

dataset MR MRR MDR MAP extractor aggregator distance
Covers80 41.575 0.19359 31.0 0.19359 chroma stft diff stats 1 cosine oti
YouTubeCovers 7.97143 0.6942 1.0 0.36114 pitch cont. seg. octave abst. lcs circular mean
Covers1000 144.041 0.25731 35.0 0.19159 pitch cont. seg. octave abst. lcs circular mean
Mazurkas 4.15724 0.95774 1.0 0.82286 pitch cont. seg. octave abst. levenshtein circular max
SHS9K 47.57883 0.40387 6.0 0.05102 pitch cont. seg. octave abst. lcs circular mean

Table 3. Results obtained with Cover Song Identification datasets.

The results of the second experiment are displayed as follows: the best models for
each dataset are presented in Table 3, and the entire list of metrics computed in this ex-
periment is published in https://rppbodo.github.io/phd/experiment_
2.html.

4.4 Discussion

Analysing the models that achieved the best weighted mean IICSR for MIQ-QBSH,
IOACAS-QBH, and Maria Panteli’s melody dataset, it is possible to verify that all of
them have Pitch Contour Segmentation as their feature, which matches the hypothesis
that melodic features lead to better results for melodic datasets. Regarding the aggre-
gators, two models have Octave Abstraction and one has Interval Abstraction. This is
somehow expected, since the alternative abstractions (3-level and 5-level Pitch Con-
tours) are relatively weaker due to their simplistic representations of the original pitch
sequences.

The models that performed best for the Ballroom, MAST, and Maria Panteli’s rhythm
dataset are relatively surprising, not only because none of the features are specifically
designed for rhythmic similarity tasks, but also because they are very different from
each other: Spectral Bandwidth is related to the spectrum spread, MFCC is usually
associated with timbre, and Chroma Energy Normalized Statistics (CENS) is a tonal
feature.

Regarding the highest weighted mean IICSR obtained for GTZAN, 1517-Artists,
and FMA-Small, two out of three best performing models have MFCC as their feature,
and the other one has Spectral Contrast. MFCC is a feature usually related to timbre, so
this matches the initial hypothesis. According to Jiang et al. [45], Spectral Contrast is
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reported to have a better discriminating power for different music types than MFCC, so
it is noteworthy that this feature has also emerged here.

The best models that lead to the lowest Mean Rank values for the five CSI datasets
are shown in Table 3. Four models out of five share the same feature (Pitch Contour
Segmentation) and the same aggregator (Octave Abstraction), which is a very good
indication of the relevance of these methods, while the remaining model uses a Chro-
magram as feature. All features from the best models encode tonal information, which
matches the observation in the literature that tonal differences are the less frequent be-
tween versions [22,46,47].

5 Conclusions

In this paper we introduced a modular music similarity framework designed to bench-
mark 690 music similarity models applied to specific music information retrieval tasks.
Our experiments compared these models under several datasets compiled for tasks re-
quiring different music similarity perspectives, showing that the choices of features,
aggregators and distances not only have a significant impact on the performance of
the corresponding models, but also that many useful techniques and combinations have
been largely overlooked by the music similarity literature, corroborating the importance
of comparative studies such as the present one.

As future work, we consider expanding the lists of features (HPCP, crema-PCP,
Onset Patterns, Scale Transform, Pitch Bihistogram, Intervalgram, etc), aggregators
(Dynamic Time Warping (DTW), Self-Organizing Map (SOM), vector quantization us-
ing tree-based clustering, n-grams, etc), and distances (Mahalanobis, Jensen-Shannon,
Smith- Waterman, Mongeau-Sankoff, etc) in the music similarity framework, as well
as incorporating alternative approaches to music similarity that not necessarily follow
the current pipeline, such as feature learning [16,17], metric learning [18,19], and deep
neural networks [20,21].
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