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Abstract. This paper describes a time-span tree leveled by the length of the 
time span. Using the time-span tree of the Generative Theory of Tonal Music, it 
is possible to reduce notes in a melody, but it is difficult to automate because 
the priority order of the branches to be reduced is not defined. A similar prob-
lem arises in the automation of time-span analysis and melodic morphing. 
Therefore, we propose a method for defining the priority order in total order in 
accordance with the length of the time span of each branch in a time-span tree. In 
the experiment, we confirmed that melodic morphing and deep learning of time-
span tree analysis can be carried out automatically using the proposed method. 

Keywords: Generative theory of tonal music (GTTM), time-span tree, time-
span reduction, melodic morphing, Transformer.  

1 Introduction 

Our goal is to automate the system using a time-span tree of the Generative Theory of 
Tonal Music (GTTM) [1]. GTTM consists of grouping structure analysis, metrical 
structure analysis, time-span tree analysis, and prolongational tree analysis. a time-
span tree is a binary tree with a hierarchical structure that describes the relative struc-
tural importance of notes that differentiate the essential parts of the melody from the 
ornamentation. 

The time-span tree in Fig. 1 is the result of analyzing a melody (a) on the basis of 
GTTM. Reduced melodies can be extracted by cutting this time-span tree with a hori-
zontal line and omitting the notes connected below the line (Fig. 1 (b)–(f)). Melody 
reduction with GTTM is the absorption of notes by structurally important notes. 

The problem with previous systems using time-span trees is that the priority order 
of branches of a time-span tree is not defined. The GTTM-based melodic-morphing 
algorithm we previously proposed was difficult to automate because it included a 
time-span reduction process [2, 3]. We have been developing a GTTM analyzer using 
deep learning and have been able to automate grouping structure analysis and metrical 
structure analysis using deep leaning [4, 5]. How-ever, deep learning of time-span tree 
analysis is difficult to automate due to the ambiguity of the reduction process. 

Therefore, we propose a method for defining the priority order in total order in ac-
cordance with the length of the time span of each branch in the time-span tree, ena-
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bling melodic morphing and time-span analysis to be automated. Sections 2 and 3 
describe problems with implementing our melodic-morphing algorithm and time-span 
analysis. In Section 4 we present our proposed method for the solving the above-
mentioned problems. The experiments in Section 5, we show that melodic morphing 
and time-span analysis can be automating by prioritizing the branches of the time-
span tree. We conclude in Section 6 with a brief summary and mention of future 
work. 

 
Fig. 1. Time-span tree and melody reduction 

2 Implementation Problems of Melodic-Morphing Algorithm 

The meaning of morphing is to change something, such as an image, into another 
through a seamless transition. For example, a method of morphing one face picture 
into another creates intermediate pictures through the following operations. 
(a1) Link characteristic points such as eyes and nose, in the two pictures (Fig. 2a). 
(a2) Rate the intensities of the shape (position), color, etc. in each picture.  
(a3) Combine the pictures. 

2.1 Ideas of Melodic Morphing 

 Similarly, our melodic-morphing algorithm creates intermediate melo-dies with 
the following operations. 
(b1) Link the common pitch events of the time-span trees of two melodies (Fig. 2b).  

 
Fig. 2. Examples of linking two pictures/melodies 
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(b2) Remove those notes that do not reside in the common part by using partial melo-
dy reduction, which is explained in the next subsection. 
(b3) Combine both melodies. 

By using the time-span trees σA and σB from melodies A and B, respectively, we 
can calculate the common events of σA ⊓ σB, which includes not only the essential 
parts of melody A but also those of melody B (Fig. 3 (b1)). The meet operation σA ⊓ 
σB is abstracted from σA and σB, and those abstracted notes that are not included in σA 
⊓ σB are regarded to be the difference between σA and σB. 

2.2 Partial Melody Reduction 

Music features contained in σA and σB should exist even in what is not included in the 
common part. To retrieve these characteristics, we need a method of smoothly in-
creasing or decreasing the number of features. Partial melody reduction abstracts the 
notes of a melody by using reduction. 

With partial melody reduction, we can first acquire melodies αi (i = 1, 2, ⋯, n) from 
σA and σA ⊓ σB with the following algorithm. The subscript i of αi indicates the number 
of notes that are included in σA but not in σA ⊓ σB. 
Step 1: Determine the level of abstraction The user determines the parameter L that 

determines the level of melody abstraction. Parameter L is from 1 to the num-
ber of notes that are included in σA but not included in σA ⊓ σB.  

Step 2: Abstraction of notes This step involves selecting and abstracting a note that 
has the fewest dots, obtained from metrical analysis, in the difference of σA and 
σB. The numbers of dots can be acquired from the analysis results. If two or 
more notes have the fewest dots, we select the first one.  

Step 3: Iteration Iterate step 2 L times. 
Subsumption relations hold as follows for the time-span trees σαm constructed with 

the above algorithm. 

 
Fig. 3. Overview of melodic-morphing algorithm 
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𝜎𝜎𝐴𝐴  ⊓ 𝜎𝜎𝐵𝐵  ⋤  𝜎𝜎𝛼𝛼𝑛𝑛  ⋤  𝜎𝜎𝛼𝛼𝑛𝑛−1  ⋤  ⋯  ⋤  𝜎𝜎𝛼𝛼2 ⋤  𝜎𝜎𝛼𝛼1 ⋤  𝜎𝜎𝐴𝐴  (1) 
In Fig. 3 (b2), there are nine notes included in σA but not included in σA ⊓ σB. 

Therefore, the value of n is 8, and we can acquire eight types of melody αi (i = 1, 2, ⋯, 
n) between σA and σA ⊓ σB. Hence, melody αi attenuates features that exist only in 
melody A. 

In the same manner, we can acquire melody β from σB and σA ⊓ σB as follows. 
                          𝜎𝜎𝐴𝐴  ⊓ 𝜎𝜎𝐵𝐵  ⋤  𝜎𝜎𝛽𝛽𝑗𝑗  ⋤  𝜎𝜎𝐵𝐵  (2) 

2.3 Combining Two Melodies 

We use the join operator ⊔ to combine melodies σαi and σβj , which are the results of 
the partial reduction done using the time-span tree of melodies σA and σB (Fig. 3 (b3)). 

The simple join operator is not sufficient for combining σαi and σβj , because σαi ⊔ 
σβj is not always a monophony nevertheless σαi and σβj are monophonies. In other 
words, the result of the operation may become polyphony (chords) when the time-
span structures overlap and the pitches of the notes differ.  

To solve this problem, we introduce a special notation, [n1, n2], which indicates 
note n1 or note n2, as a result of n1 ⊔ n2. Accordingly, the result of σα ⊔ σβ is all possi-
ble combinations of monophony. 

 
2.4 Implementation Problems of Melodic-morphing Algorithm 

Although we have given priority to automating the morphing process, our melodic-
morphing algorithm has the following two problems. 

Problem 1: No order of abstract notes. The first problem has to do with the order of 
abstract notes in partial melody reduction. In Step 2 of Section 2.2, an abstraction is 
made from the notes with the fewest dots, but this is not always the case, for example, 
in a time-span tree where there is a structurally salient note on a weak beat. In addi-
tion, we have to consider whether it is appropriate to uniquely determine the partial 
reduction path, as in Equation 1 in Step 3. If there are multiple paths for partial reduc-
tion, there is a possibility that more diverse melodies can be output. 

 

Problem 2: Notes with overlapping times occur. The second problem is that the 
two notes overlapped temporally that may occur in the join of two time-span trees. In 
such cases, it is necessary to manually select one melody from among multiple gener-
ated melodies, and it is difficult to completely automate the morphing method. Fur-
ther, the user remains in the dark as to the morphing process. In particular, it is diffi-
cult for the user to understand that the number of melodies output as a result of a 
number of melodic morphing changes. Even if the user understands the outline of the 
morphing method in Section 2, the outputs of multiple melodies may not match his or 
her expectations. 

Our approach for automating melodic morphing is to define the order of notes ab-
stracted by partial reduction and the order of notes selected by join. That is, when the 
time-span trees σA and σB of melodies A and B and the number of notes to be abstract-
ed for each are determined, a unique melody, C, is obtained.  
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3 Implementation Problems of Deep-learning-based Time-span 
Tree Analyzer 

There are three problems in the deep learning of time-span tree analysis, as follows. 

Problem 3: Low Number of Ground Truth Data Sets. As ground truth data of the 
time-span tree, 300 melodies and their time-span trees are published in the GTTM 
database [6]. However, the number of data sets (300) is extremely small for learning 
deep neural networks (DNNs). For a small amount of learning data, over-fitting is 
inevitable, and an appropriate value cannot be out-put when unknown data are input. 

In the time-span analysis by musicologists, the entire time-span tree cannot be ac-
quired at once but gradually analyzed from the bottom up. Therefore, the minimum 
process of analysis is set as one data set, then the number of data sets is increased. For 
example, if the DNN [7] directly learns the relationship between a four-note melody 
and its time-span tree, the number of data sets is only one. If we consider the process 
of reducing one note to one data set, the number of data sets will be three, as shown in 
Fig. 4a. 

The trained DNN estimates the melody consisting of n-1 notes that is reduced to one 
note when a melody consisting of n notes is input. A time-span tree for a melody con-
sisting of four notes can be constructed by estimating four to three notes, three to two 
notes, and two to one note, and combining the results (Fig. 4b). 

 
Fig. 4. Learning and estimating by stepwise reduction 

Problem 4: Ambiguity of Reduction Process.  

Time-span reduction removes decorative notes by pruning from the leaves at the tip of 
the tree, leaving only structurally important notes in the melody. To implement the 
stepwise reduction described above, the priority of branches must be obtained in a 
total order. 
However, when it comes to GTTM, there are only a few examples of reduction using 
a time-span tree, and there is no detailed explanation on the reduction procedure [1]. 
For example, in Fig. 1, we can see five levels of reduction results, but it is not clear 
how many levels are necessary. 
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Marsden et al. [8] suggested a means of determining the salience of two note events a 
and b, neither of which are descendants of the other. They proposed defining the sali-
ence of an event as the duration of the maximum of the time spans of the two children 
at the branching point when the event is generated or where it is reduced. 
To automate stepwise reduction, it is more important for the DNN to learn the rela-
tionship before and after the reduction than it is to reduce the order of the notes to 
close to that of human cognition. In Section 4, we propose a time-span tree leveled by 
the duration of the time span for a simple reduction order that is easy for the DNN to 
learn.  

4 Solution: Time-span Tree Leveled by Duration of Time Span  

The head in a time-span tree is the top-most pitch event, that is, the most salient in the 
tree. When two adjacent subtrees are combined, one of the two heads of the subtrees 
becomes the head of the whole. This indicates that the head of a tree is most salient in 
the time interval the tree occupies. Since a tree is a hierarchical combination of sub-
trees, the longest interval of each event in the tree is the most salient as the head of a 
subtree. Accordingly, we define the base case, when a subtree consists of a single 
pitch event, to be the duration of the event. 

Maximum time span: We call the longest temporal interval when a given 
pitch event becomes most salient as the maximum time span for the event. In 
other words, the maximum time span of a pitch event coincides with the tem-
poral duration of the subtree of which the event becomes the head, as a result 
of the time-span analysis. 

The priority of each branch of the time-span tree is determined with a time-span 
tree drawn with the maximum time span used in the time-span segmentation carried 
out as the first step of the analysis of time-span reduction. The branch priority is de-
termined in accordance with the following rules. 
 Priorities are assigned to each level from the top of the time-span tree drawn 

with the duration of the time span.  
 At the top level, the main branches take precedence.  
 At the second and subsequent levels, the higher the priority of a branch X is, the 

higher the priority of the branch off of X becomes.  
Figure 5 shows a time-span tree drawn with the duration of the time span. The 

branch priority is determined in order from the top in accordance with the first rule. 
Then, in accordance with the second rule, branch 1 has the highest priority in this 
time-span tree, and branch 2 has the second-highest priority. The second level in this 
tree is the double-note level. In accordance with the second rule, the branch off from 1 
becomes 3, and that from 2 becomes 4. In the same manner, the priority is determined 
up to the 16th note level. 

4.1 Automatic Melodic Morphing 

For automatic partial reduction, we determine how much each melody is to be re-
duced and reduce the branches of the non-common part of the two melodies. If the 
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non-common part of the melody of A is reduced by 30%, the reduction ratio of melo-
dy B is determined to be 70%, so that the total is 100%. Then, in the non-common 
part of each melody, the branches are reduced in order from the branch with the low-
est priority. The number of notes is finite, so reducing them in accordance with a set 
reduction ratio is often impossible. In such cases, the branches are reduced to be clos-
est to the reduction ratio. 

As described in Section 2.3, when a melody is synthesized by a join operation, the 
branches of the time-span tree may overlap at the same time. For example, if the 
branches and notes overlap at the same time due to the join operation of melody A and 
B, the note with the lower reduction ratio is left. If both reduction ratios are 50%, the 
note of A is left. 

 
Fig. 5. Time-span tree leveled by duration of time span. 

4.2 Automatic Time-span Tree Analysis by Deep Learning 

The melody is leveled by the duration of the time span, then it is reduced one note at a 
time from the lowest level. In the following explanation, when there is a branch, the 
child branch is called a “sub-branch,” and the parent branch is called the “main 
branch”. Since the ground truth data of the time-span tree are mono-phonic, the target 
is monophony in this paper. 

In the time-span tree leveled by the duration of time span, the level of the main 
branch is always higher than that of a sub-branch. Therefore, if the reduction is car-
ried out in order from the lowest level, the reduction process will proceed without 
contradiction. It is also important that the reduction process be simple when learning 
stepwise reduction with a DNN. 

Previous time-span tree analyzers (ATTA [9] and sigmaGTTMIII [10]) had low 
performance because they analyzed in a bottom-up manner using only local infor-
mation. In contrast, we propose using the entire note sequence before and after step-
wise reduction for learning the DNN. 
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When a recurrent neural network (RNN) [11] or long short-term memory (LSTM) 
[12] is used as the DNN, the DNN can learn using note sequence, but when a long 
note sequence is input, the DNN forgets the beginning of it, thus it cannot make use 
of all the information of the note sequence. 

Seq2Seq [13] and Transformer [14] can learn and predict using the information of 
the entire note sequence. The difference between Seq2Seq and Transformer is the 
representation of position in the note sequence: Seq2seq uses relative positions by 
sequentially inputting sequence data into the RNN, while Transformer has an inde-
pendent additional layer of position information and uses the absolute position. 

Therefore, if the absolute position is important for stepwise time-span reduction, 
Transformer will have high performance, and if the relative position is important, 
Seq2Seq will have high performance. We evaluated which of the two has the higher 
performance, as described in Section 5.2. 

5 Experiment and Results 

As a verification of the usefulness of our proposed time-span tree leveled by the dura-
tion of time span, we conducted an experiment to confirm whether melodic morphing 
and time-span tree analysis can be carried out automatically. 

5.1 Automating Melodic Morphing by Prioritization of Branches 

After acquiring the time-span tree, there was no arbitrariness in the prioritization of 
the branches, partial reduction, and combination of melodies. Therefore, when the 
reduction ratio was determined, the morphed melody could be deterministically ob-
tained. In Figure 6, the notes included in melody A are displayed with stems up, and 
those included in melody B are displayed with stems down. 

 
Fig. 6. Results of automatic morphing. 
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5.2 Comparison of Seq2Seq and Transformer in Stepwise Time-span 
Reduction 

Learning data and evaluation data were created from MusicXML, which are score 
data, and time-spanXML, which is the ground truth of a time-span tree by the fol-
lowing procedure. The proposed method was first used to reduce (in a stepwise man-
ner) each of the 300 melodies by using the time-span tree, and data before and after 
the reduction were generated. 

     Next, the notes in the melodies were made into a one-character string with the 
pitch and duration concatenated. The pitch was represented as 12 types: C, C#, D, D#, 
E, F, F#, G, G#, A, A#, and B (excluding octave information). A key that was a major 
or minor key was then changed to C major or A minor. The duration was represented 
by multiplying the duration elements of MusicXML by 4. By multi-plying by 4, the 
duration of most notes became an integer, but since there were melodies containing 
only a few triplets, quintuplets, sextuplets, and septuplets, the duration was rounded 
up to an integer. Then, a space was inserted between the strings to represent notes. 
Finally, in the note sequence after the reduction, “r” was inserted at the position of the 
reduced note so that we would know which note had been reduced. 

The Seq2Seq and Transformer models were both trained with 7362 stepwise time-
span-reduction training data sets generated from 270 songs from a GTTM database 
consisting of 300 pieces, and 849 evaluating data sets were generated from the re-
maining 30 pieces. Table 1 shows the accuracy of matching the evaluation data and 
prediction data after 20,000 epochs of training. We can see that Transformer outper-
formed Seq2Seq in stepwise time-span reduction. Learning was carried out using 
Nvidia Quadro RTX5000 for laptops [15], and the learning time of Seq2Seq was six 
days, which is much longer than the seven hours taken by Transformer. 

Table 1. Comparison of Seq2Seq and Transformer models. 

 Seq2Seq Transformer 
Accuracy 0.90 0.99 

6 Conclusion  

We proposed the introduction of time-span tree leveled by the duration of time span 
to problems that are difficult to automate due to the lack of prioritization of time-span 
tree branches.  Experimental results confirmed that melodic morphing and time span 
analysis based on deep learning can be automated. 

We plan to develop various applications and content by using a time-span tree. Our 
morphing method has appeared in the smart-phone applications of Melody Slot Ma-
chine [16], which has a huge number of downloads. By using an automated morphing 
system, it is possible to build a system that facilitates the addition of content on Mel-
ody Slot Machine. 
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