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Welcome to CMMR 2021

We are pleased to welcome you to the 15th edition of CMMR being held online. We
hope that by participating in CMMR 2021 and actively interacting with each other, you
will be able to actively exchange ideas, gain rich inspiration, and make great progress
in your research.

The global corona disaster also had a great impact on the CMMR conference. Orig-
inally, we, the organizing committee, had planned to hold the CMMR in Tokyo in
November 2020. The deadline for submissions was set at April 2020, and the call for
papers was distributed. However, since we could not foresee the end of COVID-19 in-
fection unfortunately, we made a tough decision to postpone the conference for one
year, only two weeks before the deadline of April. Thus, we are finally very happy to
be able to hold the conference online and to welcome so many participants!

CMMR 2021 takes place using Zoom, Slack, and YouTube over a period of five
days, and the sessions have been arranged according to Asian, European, and American
time zones. To take advantage of the nature of the online conference, we have made
the participation fee free for those who only watch the sessions. Instead of giving up
social events such as receptions and banquets, we have set up a number of interaction
channels on Slack, and in addition to Zoom, we also provide simultaneous and archived
streaming on YouTubeLive.

The conference theme of CMMR 2021 has been set at “Music in the AI Era.” In
music informatics, interdisciplinary collaborative research has already been conducted
with various related fields such as linguistics, brain science, psychology, sociology, ped-
agogy, and art. Recently, the rapid development of artificial intelligence technology is
changing not only the nature of interdisciplinary collaborative research, but also the
meaning of music for people and society. CMMR 2021 aims to share knowledge with
participants who share a common background in music informatics, through in-depth
discussions on the current status and vitalization of interdisciplinary research and the
use of artificial intelligence technology.

We are delighted to include a keynote speaker and two invited speakers based on
the conference theme “Music in the AI Era.” The keynote lecture is given by Prof.
Shuji Hashimoto (Professor Emeritus and former Vice President of Waseda Univer-
sity, and former Vice President of the International Computer Music Association), and
the invited lectures are given by Dr. Gaetan Hadjeres (SONY CSL, Paris) and Prof.
Tadahiro Taniguchi (Professor, Ritsumeikan University). The music works are avail-
able on YouTube, and we have set up the music sessions in which composers explain
music works.

Lastly, I briefly introduce the organizing committee. In Japan, the Special Inter-
est Group on Music (SIGMUS) has been active since 1993, and playing a key role in
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incubating music informatics in collaboration of industry and academia. Most of the
members of the organizing committee belong to SIGMUS, and have been engaged in
research activities for a long time. SIGMUS financially supports CMMR 2021.

We would like to express my sincere gratitude to all the members the Scientific
Program Committee, Music Committee, and Steering Committee, and the sponsors for
their cooperation in organizing CMMR 2021.

Keiji Hirata
General Chair
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Message from Scientific Program Chairs

Thank you for attending the 15th International Symposium on Computer Music Multi-
disciplinary Research (CMMR 2021), the first online conference in a series of CMMR
conferences. Holding CMMR 2021 in a fully online format was a very difficult deci-
sion for us. When we decided to postpone CMMR 2020 for one year, we expected that
we could hold the conference onsite in 2021. However, the worldwide COVID-19 pan-
demic has not yet ended; therefore, we decided to hold CMMR 2021 online.

Despite the online conference, the paper review process was carried out in almost
the same way as for the past CMMR conferences. Each submission was peer reviewed
by three experts in principle. The review process was single-blind. From various regions
in the world, including Japan, Europe, the United States, Canada, Brazil, and India, 48
papers were submitted. Out of them, 33 papers were accepted. As the conference name
suggests, these papers cover a wide range of topics including audio signal processing,
music information retrieval, artistic applications of artificial intelligence, performance
modeling, and computational music analysis. Although recent CMMRs included poster
and/or demo presentations, we collected only long and short papers (10 and 6 pages, re-
spectively) with oral presentations to make the online conference as simple as possible.

The most important policy in organizing CMMR 2021 in the online format is to
encourage both synchronous and asynchronous discussions. To encourage synchronous
discussions, we will use Zoom, an online video meeting platform. Each presenter will
present his/her work on Zoom using the screen share function. In addition, we will
set up an opportunity for discussions, namely, post-session discussions, using Zoom’s
breakout room function after each session. We sometimes enjoy discussion at the cof-
fee breaks in onsite conferences. The post-session discussion aims to provide a similar
opportunity to do this. To encourage asynchronous discussions, we use YouTube and
Slack. Each presentation will be broadcast on YouTube Live and archived as YouTube
video content. Participants can therefore watch presentations after the sessions. We
think this process will enable people worldwide to more easily participate in the confer-
ence because some sessions will be held at midnight in some time zones. After watching
video presentations on YouTube, the participants will be able to ask questions on our
Slack workspace. To encourage discussions on Slack, we have established a separate
channel for each presentation.

The music program, which is also an important part of CMMRs, was also affected
by COVID-19. When we planned to hold the conference onsite, we were preparing a
live concert at a hall in Japan. Unfortunately, however, the music program committee
(Chair: Prof. Shintaro Imai) had to decide to change a place for presenting musical
works from a real live concert to online video sharing on YouTube. Nevertheless, 32
various musical works from over the world were submitted, and 13 were accepted.



iv

We would like to thank all the people who submitted and reviewed papers and all
the participants of the conference. We would, in particular, like to thank the program
committee members who had to review many papers within only one month, because
the paper deadline was set one month later than usual to encourage a large number of
paper submissions. Without each program committee member’s cooperation, it would
not have been possible to hold the conference.

We hope all participants enjoy the conference.

On behalf of the scientific program committee chairs,
Tetsuro Kitahara
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Keynote Lecture

Shuji Hashimoto
Professor Emeritus and Research Advisor, Waseda University

Shuji Hashimoto received the B.S., M.S. and Dr. Eng.
Degrees in Applied Physics from Waseda University,
Tokyo, Japan, in 1970, 1973, and 1977, respectively.
He was an Associate Professor in the Department
of Physics, Toho University from 1979. In 1991 he
moved to Waseda University as a Professor of the De-
partment of Applied Physics. In Waseda University he
served as the Director of the Humanoid Robotics In-
stitute for ten years from 2000. During 2006-2010 he
was the Dean of Faculty of Science and Engineering.
He was appointed and served as the Senior Executive
Vice President for Academic Affairs and Provost of
the University from 2010 to 2018. He has been one
of the leaders of the Gundam Global Challenge since
2014. Currently he is a Professor Emeritus and Re-

search Advisor of Waseda University. He joined XELA Robotics as the CEO in April,
2019. His research interests include Artificial Intelligence, Robotics, “KANSEI” Infor-
mation Processing, Sound and Image Processing and Meta-Algorithm.

Lecture: Music in the AI era

Many times, we were declared “Finally real artificial intelligence has been completed”
and we were betrayed each time with various excuses. However, looking at the recent
progress in AI technology, it seems that this time it might be true. Powerfully connected
computers with big data seem to present adequate solutions to complicated problems
that could not be solved ever before.

Science and engineering have been an integral inseparable to form technology. Sci-
ence organizes discovered knowledges and construct the theory to understand, while
engineering presents means and methods that put the theory into practical use to pro-
vide solutions to real world problems. But presently the deep-learning-based AI pro-
duces solutions directly from a huge accumulation of raw data. It seems that science is
blown off from the traditional picture of technology. The rest is engineering alone that
delivers solution. At present, AI works well most but not all. However, it does not tell
us why the answer is correct. As many people complain, there is no proof of validity.
The output of AI often sounds like God’s revelation. It is a black box we never know its
inside. What we can do is only to believe in AI, saying that “because the computer is
aware of all.” With the recent rise of AI, traditional decent researchers, who accumulate
appropriate processes based on theory and knowledge to approach the solution, seem
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to have been exiled from the main stage in many fields including music technology and
science.

Science seems to be at stake in this way, but I am not pessimistic about the current
situation. We need a science to understand things. We need engineering to make things.
Science hates black box. While engineering often accept black box if it is useful. Useful
tools accelerate science. AI is not yet in the final stage neither human intelligence is
not. I believe we needs to start a new story of science together with a new tool AI.
Music is fascinating field in elucidating human intelligence and creativity as it contains
philosophy and arts, science and engineering, I would like to talk my story on Music in
the AI Era.



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

3

Invited Lectures

Gaëtan Hadjeres
Sony CSL Paris Music Team

Gaëtan Hadjeres graduated from the École Polytech-
nique (France) and obtained a master in Pure Math-
ematics from Paris 6 University (Sorbonne Univer-
sités). He joined Sony CSL Paris in 2014 to do a
Ph.D. thesis on music generation under the supervi-
sion of François Pachet and Frank Nielsen. In 2018,
Gaëtan successfully defended his dissertation entitled
“Interactive Deep Generative Models for Symbolic
Music” and is now a permanent member of the Sony
CSL Paris Music Team. Parallel to his scientific back-
ground, he studied music composition at the Conser-
vatoire de Paris (CNSMDP) and he is also a pianist
and a double bass player. His works (DeepBach, the
Piano Inpainting Application) focus on the creation of
A.I. tools able to assist musicians during composition,

enrich their creative process and make music composition playful and accessible to a
wide audience.

Lecture: Developing Artist-centric Technology

Important progress in generative modeling has been made over the last few years, allow-
ing researchers to envision novel creative usages with impressive results. However, we
can notice that such A.I. algorithms are often not easily accessible or controllable by an
artist, so that their widespread adoption by content creators is yet to come. In this talk,
I will present various examples of our modular approach at Sony CSL to bridge the gap
between researchers and artists through the development of A.I. assistants. Setting the
interaction with an artist as our core requirement brings up new interesting challenges
and we hope it will help democratizing the latest advances in A.I. amongst musicians.
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Tadahiro Taniguchi
Professor, College of Information Science and Engineering,
Ritsumeikan University

Tadahiro Taniguchi received the ME and Ph.D. de-
grees from Kyoto University in 2003 and 2006, re-
spectively. From April 2005 to March 2006, he was a
Japan Society for the Promotion of Science (JSPS) Re-
search Fellow (DC2) at the Department of Mechanical
Engineering and Science, Graduate School of Engi-
neering, Kyoto University. From April 2006 to March
2007, he was a JSPS Research Fellow (PD) at the same
department. From April 2007 to March 2008, he was
a JSPS Research Fellow at the Department of Systems
Science, Graduate School of Informatics, Kyoto Uni-
versity. From April 2008 to March 2010, he was an
Assistant Professor at the Department of Human and
Computer Intelligence, Ritsumeikan University. From
April 2010 to March 2017, he was an Associate Pro-
fessor at the same department. From September 2015
to September 2016, he is a Visiting Associate Profes-

sor at the Department of Electrical and Electronic Engineering, Imperial College Lon-
don. From April 2017, he has been a Professor at the Department of Information and
Engineering, Ritsumeikan University. From April 2017, he has been a visiting general
chief scientist, the Technology division of Panasonic, as well. He has been engaged
in machine learning, emergent systems, intelligent vehicle, and symbol emergence in
robotics.

Lecture: Generative Models for Symbol Emergence based on Real-World
Sensory-motor Information and Communication

Music and language have structural similarities. Such structural similarity is often ex-
plained via generative processes. This invited lecture introduces the recent development
of probabilistic generative models (PGMs) for language learning and symbol emer-
gence in robotics. Symbol emergence in robotics aims to develop a robot that can adapt
to the real-world environment, human linguistic communications, and acquire language
from sensorimotor information alone (i.e., in an unsupervised manner). To this end, a
series of PGMs, including ones for simultaneous phoneme and word discovery, lexi-
cal acquisition, object and spatial concept formation, and the emergence of a symbol
system, have been developed. This lecture also introduces challenges related to inte-
grating probabilistic generative models and the possible intersection between symbol
emergence in robotics and computational music studies.
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Suiview: A Web-based Application that Enables Users to
Practice Wind Instrument Performance�

Misato Watanabe1, Yosuke Onoue1, Aiko Uemura1, and Tetsuro Kitahara1

Nihon University, Tokyo, Japan
chmi19013@g.nihon-u.ac.jp, {onoue.yousuke, uemura.aiko, kitahara.tetsurou}@nihon-u.ac.jp

Abstract. This paper presents a web-based application that enables users to
check the stability of the pitches, intensities, and timbres of the sounds they play.
Amateur musicians have opportunities to play wind instruments, at a brass-band
club at school. To make sounds with the stable pitches, intensities, and timbres,
players have to carefully control the shapes of their mouth and lips, the strength
of the breath, and their vibration. But this is difficult for most amateur musicians,
who rely on expert players to check whether they are appropriate and advise
them how to improve them. To solve this problem, we have been developing a
web-based application to enable amateur musicians to check whether the pitches,
intensities, and timbres of their sounds are stable without help from an expert
player (https://suiview.vdslab.jp/). In this paper, we describe its basic system de-
sign, the current implementation, and preliminary results of its trial use.

Keywords: Wind instrument, Musical practice, Stability, Web application

1 Introduction

Wind instruments are popular among amateur musicians. They are indispensable in
brass-band clubs at junior high school and/or high school, and many people enjoy play-
ing a wind instrument as a hobby. However, playing a wind instrument is not easy. To
produce sounds with stable pitches, intensities, and timbres, players have to carefully
control the shapes of their mouth and lips, the strength of the breath, and their vibration.

One problem in learning a wind instrument is a lack of appropriate instructors. In
the case of the above-mentioned brass-band clubs at school, the responsible teacher at
the club might not be a wind instrument expert. At such clubs, it is often common for
novice-level players to teach freshman players. Also, there are fewer music schools that
teach wind instruments than the piano.

Wind instrument performances have been investigated from different points of view
such as acoustic, psychological, and physiological ones. Brown [1] investigated acous-
tic features for automatic identification of woodwind instrument sounds. Hirano et al.
[3] analyzed muscular activity and related skin movement during French horn perfor-
mances. Micheal [5] examined the effects of self-listening and self-evaluation in the
context of woodwind and/or brass practice by junior high school instrumentalists, and
found that self-evaluation was important for improving the instrument.

� This research was supported by JSPS Kakenhi Nos. JP-19K12288 and JP-20K19947.
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More recently, there have been attempts to develop systems that allow users to easily
understand how their performances are good from visual feedback or computational as-
sessment. Pati et al. [7] applied deep neural networks to automatic assessment of student
musical performances. Giraldo et al. [2] developed a system that analyzes sound quality
of violin performances and provides visual feedback to users in real time. Knight et al.
[4] developed a visual feedback system of musical ensemble focusing on phrase artic-
ulation and dynamics. Morishita et al. [6] developed a system that gives novice practi-
tioners (especially children) visual feedback of acoustic features in long-tone training of
wind instruments. These systems have been aiming at a goal close to ours, but most of
them are not designed to enable anyone to easily check his/her performances on his/her
smartphone and/or tablet.

In this paper, we present a web-based application for practicing playing wind in-
struments by themselves. The important is to give users objective feedback. Because
its target users are novice players, we consider that sounds should be stable, in other
words, sounds should keep a close pitch, intensity, and timbre from the beginning to the
end. Our app. analyzes the pitch, intensity, and timbre of sounds recorded on the app,
evaluates their stability, and gives visual feedback to the user. It also provides a function
that enables the user’s teacher to give comments to the recorded sounds.

2 Basic Design and Functions

Our app aims to provide wind instrument practicers with useful information about the
sounds performed by them. For novice-level players, as discussed in the Introduction,
acquiring skills for sounding stably is important. Therefore, one of the important func-
tions of our app. is therefore to visualize the stability of the acoustic characteristics (i.e.,
pitches, intensities, and timbres) of the sounds performed by the user.

Recognizing how well the user is incrementally improving such stability day by
day is also important. Therefore, we implement a function for visualizing recording-
by-recording variations in the stability of the pitches, intensities, and timbres as well as
visualizing the acoustic characteristics of each recording.

Also, we implement a teacher-to-student comment function. Although objective vi-
sualization is useful for novice players, subjective evaluation and comments by their
teacher is also important. By linking a teacher-mode user to student-mode users, the
teacher-mode users can listen to the recordings of the linked student-mode users and
give them his/her evaluations and comments.

2.1 Recording

Once the user opens and logs into our app., he/she can select what to play from a long
tone, a scale, and an arpeggio (Fig. 1). The scores displayed are shown in Fig. 2. After
selecting one from these three scores, the user starts recording his/her performance with
a sampling rate of 48 kHz (Fig. 3). Recorded sounds are automatically stored on our
web server with some metadata such as the user ID, and the recording date.
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Fig. 1. Screen for selecting what to play

(a) Score for a long tone

(b) Score for a scale

(c) Score for an arpeggio

Fig. 2. Three scores currently supported by our app.

Fig. 3. Screen for recording a sound
Fig. 4. Example of analysis results (A: self as-
sessment, B: stability scores, C: chart)
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(a) Pitch (b) Intensity

(c) Timbre (d) Intensities for multiple sounds

Fig. 5. Examples of visualization of acoustic features of recorded sounds

2.2 Visualizing the acoustic characteristics

Once a recording is stored on the webserver, its acoustic analysis starts. The funda-
mental frequency (F0), amplitude, and spectral roll-off are extracted with a 512-point
shift from the recorded sound. We use Librosa (https://librosa.org/) for extracting these
features. Next, these features are plotted on the screen, as shown in Fig. 5 (a) to (c).
Features for multiple sounds can be plotted on the same screen, as shown in Fig. 5 (d).

2.3 Visualizing the recording-by-recording variations in the stability

The stability of the pitch (F0), intensity (amplitude), and timbre (spectral roll-off) is
calculated for each recording. The stability is defined based on the temporal standard
deviation of each feature. Let σF0, σAmp, σSp represent the temporal standard devia-
tions for the F0, amplitude, and spectral roll-off, respectively. Then, their stability si
(i ∈ {F0,Amp, Sp}) is defined as si = 100 exp(−σi/ai), where ai are pre-defined
constants (aF0 = 4, aAmp = 70, aSp = 1500). Thus si has a value between 0 to 100.

The stability is visualized in two ways to enable the user to check the stability for
multiple recordings at a glance (Fig. 6). One is a stacked bar chart that represents the
stability of each of the pitch, intensity, and timbre (Fig. 6 (a)). The other is a line chart
that represents overall stability scores (Fig. 6 (b)).

2.4 Teacher-to-student comment

Logging in with the teacher mode, the user can listen to sounds recorded by the linked
student-mode users and check the visualization of their acoustic features and stability
scores. Also, using the teacher-mode, the user can write comments. The comments are
automatically sent to the corresponding student-mode user.
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(a) Stacked bar chart (for each stability)
(b) Line chart (for total stability score)

Fig. 6. Examples of visualization of Recording-by-recording stability variations

Fig. 7. Screen for the teacher mode

3 Trial Use

Three participants used our app for a preliminary evaluation of the effectiveness of the
app. Out of the three participants, one (P 1) was an active player with an intermediate-
to-advanced level while the other two (P 2 and P 3) were novices, though they had
experience in playing instruments in the past.

Logging in with the student mode, the participants played a long tone, a scale, and
an arpeggio on the clarinet several times and recorded them on our app. They saw the
visualization of their sounds made by our app. and were asked to answer the following
questions on a four-level scale (4: agree, 1: disagree):

Q1 Do you think this app helps you produce stable sounds?
Q2 Did you get useful information from the visualization?
Q3 Are the stability scores close enough to your own impression?

The results, listed in Table 1, imply that the participants comparatively highly eval-
uated our app. In fact, the two novice-level participants gave us comments such as:

– By listening alone, it was difficult to find what to improve to produce stable sounds.
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Table 1. Results of the preliminary questionnaire (1 to 4)

P 1 P 2 P 3
[Q1] Do you think this app helps you produce stable sounds? 3 4 3
[Q2] Did you get useful information from the visualization? 2 4 4
[Q3] Are the stability scores close enough to your own impression? 2 4 4

– With graphical visualization , novice-level players could find what to improve.
– Line charts were easy to grasp which were good and which were not.

On the other hand, one participant answered that he/she could not understand what
each graph means. More intuitive visualization should be explored. We also received an
opinion that they wanted to see the analysis for sounds given by professional players.

4 Conclusion

In this paper, we presented a web-based application that enables users to recognize the
stability of wind instrument sounds played by them by visualizing their acoustic fea-
tures and stability scores. Once the user records his/her wind instrument sounds on the
app, their acoustic features including the pitches, intensities, and timbres are analyzed
as well as their stability is evaluated. Three participants in a preliminary experiment
gave us comments that the visualization was useful to produce stable sounds.

Although we focused on the stability of pitches, intensities, and timbres, more com-
plex expressions such as detailed dynamics would be important for more advanced
players. We will extend the app to support such advanced level players’ practice as well
as systematic evaluation of our app.
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Abstract. We present Triaume, a handheld augmented non-pitched percussive
musical instrument based on the triangle. Our proposal relies on a capacitive
thumb sensor, which allows controlling digital musical devices while preserving
the possibility of playing the instrument’s traditional techniques. We reduce the
augmentation invasiveness by using an external smartphone to emulate faders re-
lated to the instrument’s configurations. Triaume’s interaction proposals are built
from idiomatic techniques used in regional Brazilian music genres. We can use
the sensor as an on/off button that can, either on touch or release, trigger pre-
programmed percussive sounds that can be played together with the triangle’s
acoustic sound. Also, we use a low-pass filter to convert the digital sensor’s ac-
quisitions to a continuous value, allowing expressive synthesis control. Triaume
can be used in avant-garde music, and its interaction design favors its use in vari-
ations of traditional music.

Keywords: Triangle, Capacitive sensor,Pulse Width Modulation (PWM),Augmented
instrument, Brazilian music

1 Introduction

Traditional music instruments can be augmented with electronic sensors, which can ac-
quire signals to control devices like synthesizers and effect processors. These sensors
usually exploit the so-called spare bandwidth [1] , that is, movements or limbs that are
not used in the traditional playing techniques and, therefore, can be used for other pur-
poses. Augmented instruments can provide new expressive possibilities when compared
to their traditional counterparts.

This work presents an augmentation proposal for the triangle, a handheld non-
pitched percussion instrument traditionally used in several regional Brazilian music
genres such as Forró, Xote, and Baião [2] . The acoustic triangle is usually held with
one hand using the index finger and played with the other hand using a metal mallet.
The instrument’s sound can be damped by closing the holding hand’s palm around the
triangle’s side.

Our augmentation proposal uses a single capacitive sensor [3], [4], [5], [6], [7], [8]
placed on the instrument’s upper corner. The sensor is isolated from the instrument’s
body and is activated with the holding hand’s thumb independently of the damping
or mallet striking actions. This placement allows an interplay between the traditional
techniques and the augmented possibilities.
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This minimalistic augmentation barely impacts the use of the traditional techniques
but brings other challenges of its own. The first one is to allow the musician to configure
the instrument’s parameters during performance without bringing a computer to the
stage. We mitigate this problem using a smartphone, which provides all necessary faders
for this configuration. The second challenge is to provide a diversity of interactions that
can be creatively explored.

To tackle this challenge, we use mapping strategies inspired in the common (even
if not traditional) technique of playing other instruments, such as hi-hats (triggered
with a pedal), or sets of cowbells or carillons [9], [10], together with the triangle in
Brazilian regional music. In our proposal, we investigate the possibilities of triggering
events on sensor touch or on sensor release, inspired by the damp (close hand) and
release (open hand) gestures typically used in Forró music. They can be used to play
virtual instruments, in special percussive sounds, allowing the musician to play with
more instrumental layers.

Additional control possibilities can arise from encoding the sensor information
through time [11] . In our proposal, we use a low-pass filtering technique to convert
a sequence of on/off acquisitions to a continuous control signal, similarly to a Pulse
Width Modulation motor control [12], [13] . This allows using the capacitive sensor as
an interactive fader that can be controlled using rhythm.

2 Instrument Design

The triangle augmentation consists of three blocks, as shown in Figure 1. The first is
Triaume itself, which is a regular acoustic triangle with an attached capacitive sensor
and an ESP32 microcontroller [14]. The second is a smartphone that runs a MobMu-
Plat [15] patch and controls the digital configurations. Both of these blocks send Open
Sound Control (OSC) [16] packets to the third one, a computer that executes sound
synthesis and control in a Pure data (Pd) patch [17]. Each of these blocks is discussed
next.

2.1 Triaume Body

The augmented triangle has one single sensor, which is a capacitive sensor attached
to the triangle’s upper corner. As shown in Figure 2 , the sensor is isolated from the
instrument’s body using insulating tape. A distance was kept between the insulated
tape covered area and the region that is normally stroke by the triangle mallet when
applying techniques used in the context of Brazilian music. Mounting the sensor close
to the triangle’s tip reduces the sensor’s impact on the sound’s quality.

We used the Capacitive Sensor library created by Paul Badger [18], [19], which
allows to build high sensitivity sensors using only a resistor, a microcontroller, and an
electrode, which can be made of any conductive material. Our electrode was made using
copper tape and it was connected to a 1MΩ resistor, linked to one of the ESP32 pins.
The library continually yields capacitance readings, which are disturbed by touching
the copper tape.
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Fig. 1. System overview. The computer receives OSC packets both from the Triaume and from a
smartphone.

Both the sensor type and microcontroller model are chosen based on the idea of
developing a low-cost instrument since the acquisition of imported products in Brazil
is expensive due to taxes. In some cases, the final cost of imported products can reach
even twice the value of the original cost. [20]. Therefore, using low-cost components is
desirable for allowing easy access to the instrument.

The microcontroller is attached to the musician’s body, reducing its impact on the
instrument’s sound and playability. It sends the measured capacitance values to the
computer using OSC packets, which can use a RS-232 connection with serial line in-
ternet protocol (SLIP) [21] or UDP packages over a Wi-Fi connection. The RS-232
connection provides a lower delay, but requires a connection cable; conversely, the Wi-
Fi connection allows a greater mobility for the musician, but tends to have longer and
more unstable delays [22]. This simple setup is barely invasive to the instrument but
requires an additional device to provide configuration faders for performance usage, as
described next.

2.2 Smartphone

It is often desirable that control-to-sound mapping proposals allow on-site adjustments,
either during soundcheck or to change sonorities in different parts of a performance.
Our system provides this functionality using a smartphone application, shown in Fig-
ure 3. The application is based on MobMuPlat and sends the computer configuration
parameters using OSC over WiFi. Similarly to the knobs in a guitar effects pedal, the
application can be used intermittently on stage.

The advantage of using a software application is that it can be easily configured and
expanded as to match different sound processing proposals that might be built using
Pd. Moreover, because it is external to the triangle, it can be left in a safe place dur-
ing performance. Henceforth, this design option contributes to reduce the invasiveness
and flexibility of Triaume’s setup when compared to the idea of having physical knobs
attached to the triangle.
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Fig. 2. The capacitive sensor is attached to the triangle’s tip and isolated from the instrument’s
body using insulating tape.

2.3 Computer

The final block in the augmentation system is a computer, which executes a Pd patch
responsible both for converting the capacitive sensor’s continuous values to on/off in-
formation and for synthesizing audio to be played in a loudspeaker.

It is important to note that the conversion from continuous to on/off values could
be performed in the microcontroller. However, this conversion depends on a threshold
that changes depending on the sensor’s materials, electric noise, the instrument’s shape,
and the size of the musician’s hands. Therefore, this conversion is performed in the
computer, and the threshold is configured using the smartphone, as described in the
previous section.

The on/off sensor information is used to control sound synthesis using two different
strategies, as shown in Figure 4. For the first strategy, the sensor touch and release
gestures are immediately mapped into on/off information for sound activation. In the
second one, the on/off information is low-pass filtered, thus providing a continuous
sound parameter control. Each of these strategies is discussed next.

Using On/Off Information for Sound Activation A simple, immediate control strat-
egy is to map the on/off sensor to a synthesizer’s ADSR envelope controller. This allows
using the sensors as a key that triggers and sustains a particular sound. The sensor (and,
consequently, the related sound) can be played independently of the triangle’s damping
because it uses the thumb while the damping process uses the hand palm.

Although the sensor can provide the musician with another sound layer, it can be
hard to physically combine it with muting the triangle with the hand palm. For some
rhythmic patterns, it can be easier to play sounds when the sensor is released. It is pos-
sible to reach a myriad of rhythmic possibilities by combining the different activations
(on touch/on release) with sound synthesis configurations.
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Fig. 3. Smartphone app graphical user interface

Fig. 4. Mapping strategies. The on/off sensor can be used either on touch or on release (left). Also,
a low-pass filtering technique can convert the on/off information to a continuous signal (right).

Figures 5 and 6, respectively, illustrate both of these activation modes, showing the
on/off sensor data (upper panel) and the corresponding synthesized waveform. In both
cases, the parameters for attack speed and sustain were adjusted for minimal values,
which highlights the synchrony between the input signal and the sound output.Next, we
present our proposal to generate continuous control with the sensor.

Continuous Parameter Control: a PWM-like Approach Continuous controls can be
used in expressive sound control in important parameters that can not only be driven
directly by a binary event logic, like wet/dry levels, gains, and filter cut-off frequen-
cies. These parameters are usually controlled using faders, knobs, or sensors such as
accelerometers. In this section, we describe how to use the on/off sensor to provide
continuous control values.

The technique employed obtains continuous values from digital inputs using low-
pass filtering, similarly to using Pulse Width Modulation (PWM) [12], [13] control.
In PWM, the input signal is a square wave, which is filtered so that the output signal
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Fig. 5. Sensor data and sound output using trigger on touch.

Fig. 6. Sensor data and sound output using trigger on release.

level is proportional to the fraction of time in which the input is high (that is, the duty
cycle). Equation 1 shows the relationship between the output signal level (Vout), the
value corresponding to high level signal (A), and the duty cycle (d).

Vout = A× d (1)

In the on/off sensor, we can generate duty cycle variation by intermittently touching
and releasing the capacitive sensor. Low-pass filtering generates a smooth, continuous
signal, whose level is proportional to the duty cycle. Lower filter cut-off frequencies
lead to smoother signals but also to slower responses.

Figure 7 illustrates a demonstration of this technique. It shows an acquisition of the
on/off signal and the corresponding output after using a low-pass filtering with cut-off
frequency of 0.1 Hz. It can be seen that the filtered output increases accordingly to the
duty-cycle and can generate intermediate values wth some ripple.

This technique allows controlling effect or synthesizer parameters using a rhyth-
mic input generated by touching and releasing the sensor. This is especially desirable
because it allows using gestures that are close to those native to the Forró music reper-
toire, that is, playing rhythms with the hand. Moreover, touching and releasing parts of
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Fig. 7. Data acquired while playing the augmented instrument and low-pass filtered output.

the instrument is also part of the traditional repertoire of many percussion instruments;
hence this technique can be applied in other types of drums and other music genres.

Interestingly, both mapping techniques can be combined, generating a sound trigger
that is simultaneous to a timbre control. This one-to-many mapping can generate new
expression possibilities that do not necessarily fit the regional music genres Triaume
was inspired in. The next sections will present tests made for instrument evaluation,
followed by comments regarding the possibilities obtained by its use.

3 Instrument Evaluation

We qualitatively evaluated our instrument aiming to identify some of its musical pos-
sibilities. Triaume was evaluated from the author’s viewpoint, using their own musical
experience, first focusing on the on/off sensor, then on the PWM-like control.

3.1 On/Off Sensor

As a first experiment, we programmed Triaume synthesizer to play a sample of a per-
cussive sound triggered by sensor release. A short track was recorded, and a part of
its waveform can be seen in Figure 8. The higher magnitude pulses correspond to the
synthesized sound and the lower magnitude ones to the acoustic triangle.

Fig. 8. Triaume sound record triggering a synthesized sound sample..
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In this test, the on/off trigger provided a quick response, which allowed playing
rhythms without a perceptible delay. The capacitive sensors have shown a high sensi-
tivity and were able to detect even more subtle touches. At the same time, the sensitivity
control mechanism allowed rejecting false positives in this detection.

In order to illustrate another musical possibilities, an audio demo was recorded
choosing different percussion sounds, and also synthesized sine, square and triangle
waves. An interesting outcome was obtained when using an alternate toggle mecha-
nism to play two different cowbell sounds1 2.

3.2 PWM-like Control

The PWM-like mechanism test consisted of linking the continuous control mechanism
to a FM synthesis control module implemented in Pd. Continuous values control the
modulating wave magnitude in the FM synthesis. Adjusting the the low-pass filter cut-
off frequency allows tuning continuous signal’s change rate speed.

Mapping these continuous values directly into synthesizer fundamental frequencies
would lead to an obvious one-to-one mapping strategy [23]. Using such a strategy can
lead to results next to the ones obtained when playing the Theremin, but with an in-
evitable ripple (as suggested by Figure 7).

For demonstration purposes, a song was composed and recorded by the authors in
order to show the new instrument application context. This song, entitled ”Forró do
OSC”, shows that the instrument can be used either inside the forró idiomatic, or for
avant-garde music34.

4 Discussion

The results presented in this work demonstrate that Triaume can potentially bring new
expressive possibilities to the triangle. Its interactions were designed aiming at a low
invasiveness regarding the instrument’s traditional techniques. Even though one of the
authors plays Forró percussion, we could not perform any evaluation with external mu-
sicians due to the ongoing COVID19 crisis. However, the song composed by the au-
thors shows an idiomatic Forró example, and at the same time, innovative possibilities
for other music genres.

The idea of using low-pass filtering to convert on/off signals to continuous values
is not novel per se, as it is a straight implementation of classic PWM control [24].
However, our proposal generates the input signal from a touch sensor placed so that it

1 Audio demo with percussive sound samples available at: https://soundcloud.com/
marcio-albano/triaume-test-samples/s-k7MKiggI4E2

2 Audio demo with synthesized waves available at: https://soundcloud.
com/marcio-albano/triaume-demo-sine-triangle-square-waves/
s-kzXDBiI6izr

3 Song available for listening at https://soundcloud.com/marcio-albano/
forrodoosc/s-Qty5RREnsph

4 ”Forró do OSC” music score available at https://1drv.ms/b/s!AnEYggKX1_
PYkq4n8-k8xKsa44XXBA?e=Wc6mPG
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captures rhythms in the context of a handheld percussion. Henceforth, this process can
be interpreted as a rhythm-to-control conversion, which can be applied in several other
instruments.

5 Conclusion

This work presents an augmentation for the triangle, a handheld non-pitched percussion
instrument used in several regional Brazilian music genres. The augmentation proposal
uses minimalistic and low-cost hardware, comprised of a single capacitive touch sensor
attached to the triangle’s upper tip, which reduces its impact on using the traditional
techniques to play the triangle. On-stage configuration possibilities are obtained by us-
ing an external mobile device to fine-tune all parameters.

We use two mapping strategies. The first one uses the capacitive sensor as a key,
which can operate either on touch or on release, making it possible to add another in-
strumental layer to the acoustic one. The second one uses a low-pass filtering technique
to convert the on/off information to a continuous control, which allows reconfiguring
synthesis or digital effect parameters by performing rhythms with the thumb.

Although the on/off to continuous signal conversion was inspired by the use of the
triangle inside the Forró music context, it can be used in other musical instruments
and genres, e.g., using the gestures related to touching a drum’s membrane or side to
change its resonance. The main idea of the sensor is to convert rhythmic interactions
to a continuous value, that is, it uses gestures that are native to playing percussions.
Hence, the proposed augmentation is not only useful for Forró music itself, but also a
potential path to augment other percussive instruments in other genres.

In future work, in addition to the ”Forró do OSC” song composed for this work
demonstration, we will seek to present the augmented instrument to contemporary mu-
sic bands so that it can be explored and further improved. Currently, this process is
strongly harmed by the COVID-19 crisis, which brings forward the problem of devel-
oping musical hardware in collaboration with musicians without physical social contact.

Moreover, further sound exploration can be made using the ripple present on the
low-pass filtered output signal. This approach could give the instrument more expres-
siveness when used with adequate mapping strategies.
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Abstract. Locus Diffuse is a networked multi-user instrument populated by a
simulated slime mold and four human players. Mimicking the biological behavior
of slime mold and establishing a virtual living network between player nodes, the
system sonifies interaction along these connections. Participants use a browser
based interface to play the multi-user instrument, and access an accompanying
stream for audio and visual output of the system. Player responses from various
play sessions are explored and reported in relation to sonic ecosystems as a prod-
uct of sound sources intersected with agent behavior, defining interaction through
personal connection to agents, an aural vs visual understanding of the system, and
various frames of focus employed by participants in regard to human/machine
and inter-human collaboration.

Keywords: agent-based musical systems, multi-user instruments, natural com-
puting, slime mold

1 Introduction

Musical play has acted as a vessel for a communal engagement, identity, exploration,
and expression throughout history [6]. While the style of play may vary from recital
of composed works to free improvisation (and every permutation in between/beyond),
a common thread is that emergent group playing dynamics are revealed through the
complex interactions between each player [2]. This aspect of musical collaboration is
a social ritual in which participants are afforded a medium of aural communication be-
yond the verbal. Players can be represented as nodes within a network of participants
that expresses interpersonal playing decisions, and the resulting sonic landscape can be
seen as an emergent form of this established network. Viewed in this way, collective
action results in a cumulative sound field that is the product of each node’s (player’s)
input. An interactive instrument/environment, named Locus Diffuse was developed to
investigate and facilitate these emergent participatory network structures within collab-
orative musical play for four players. This is mediated by an instrument in which users
can “play” a space through interaction both with its population of simulated agents
and with each other. Situated at the crossroads of sonic ecosystem design, agent-based
musical systems, multi-user instruments, and networked performance, Locus Diffuse
draws on a network of practices to produce a system that is used to interrogate the out-
come of their resulting collaborative human/machine interplay. The system was initially
planned for a full scale room implementation within the DisPerSion Lab at York Uni-
versity, however due to social distancing restrictions caused by the global COVID-19
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pandemic, the project was required to pivot to a distributed virtual performance space.
Players and spectators access a live audio/visual stream as a collective hub for generated
activity, while controlling their input within an additional browser window or mobile
device. During this time of relative isolation, the project’s aesthetic themes of connec-
tion and collaboration were heightened through this additional networking component,
facilitating the communal play of all participants.

The behavior of the system’s population of agents is modelled on networking struc-
tures found within the biological form of slime mold. Harnessing natural processes of
emergent form and community, these organisms have been demonstrated to have re-
peatable emergent behaviors of aversion and attraction to environmental stimuli. Most
notably their structure takes the form of thin physical networks between food sources,
and through implementing approximations of this behavior, Locus Diffuse generates
flowing and reactive networks of autonomous agents moving between player positions.
We argue that these organisms are well suited as a metaphorical frame that mirrors
the collaborative generative network-like structure found within musical performance,
and that mapping various interaction responses can result in compelling ecosystemic
behavior.

2 Related Works & Literature Review

2.1 Harnessing Biology - Artistic & Computational Implementations

Natural Computing studies the application of natural phenomena within ecological sys-
tems and biological structure to a multitude of computational tasks [18]. These imple-
mentations can come in the form of mimicry, approximation, and inspiration from struc-
tures found within natural systems. Slime mold, specifically Physarum polycephalum,
exhibits extraordinary behavior for an organism which contains no explicit sensory or-
gans, capable of tactile, chemical, and photoreceptive sensing. The body consists of a
single cell, but can produce many flexible space-searching tubules and can change their
thickness to allow for a greater flow of cytoplasm in order to move. The body attempts
to move in a direction towards food/positive stimulus or away from negative stimu-
lus [5]. The slime mold is able to then retract, reinforcing a minimal path between all
available food sources within even complex spatial layouts such as mazes [14]. Compu-
tational models of slime mold have resulted in creating logical gates, solving resource
heavy computation, and achieving primitive memory [1]. Artistic applications of slime
mold have been advancing in tandem with computational implementations. Miranda et
al. [12] constructed a sound synthesis project which allowed for recordings of voltage at
various locations through the electrical activity of a slime mold network across a series
of food nodes. This data was then used within a granular synthesis engine to generate
sonic events.

2.2 Sonic & Performance Ecosystems

Sonic ecosystems refer to interactive systems defined by the generation of a reactive au-
dio environment in which self observing behavior and participant input result in audible
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dynamic feedback [4]. Such systems explore the relationships and outcomes established
between human, machine, and ambient environment. A central question in the con-
text of ecosystemic design is the role of the human participation within an established
work, and what constitutes “interaction”. Some systems generate a sonic environment
purely mediated by an established machine/ambience relationship, while others find
room for human interaction to extend these interactions. Di Scipio [4] describes this
ability of system self observation as “a shift from creating wanted sounds via interac-
tive means, towards creating wanted interactions having audible traces”, and claims that
it is through these traces that compelling sonification can occur.

The original, in-person formulation of Locus Diffuse was initially planned to play
off of the self-observing vocal & ambient feedback found within the design of the
dispersion.eLabOrate project [9], a system exploring collaborative sounding within
a Deep Listening-inspired sonic meditation [15] context. Within Locus Diffuse, self-
observation occurs at the agent level. Each agent is only aware of its own state (vs a
sense of other’s or environmental current states) and acts according to its sensory input
from the environment. Environmental changes and subsequent sonification are a result
of the interplay between players and the system’s agents.

2.3 Multi-User Instruments & Networked Music

Intended to promote close relationships between multiple players and resulting play
techniques, multi-user instruments allow many participants to perform through a sin-
gular instrument. Designing for a multi-user instrument context requires explicit con-
sideration of the intricacies and collaborative experiential content which the instru-
ment/system needs to convey. Jordà [11] outlines key aspects of multi-user instruments
that facilitate shared collective control within a musical system. These properties in-
clude number of users, user roles, player interdependencies/hierarchies, and the flexi-
bility of each of these components.

Creation of mutual-influence via networked sound data has been explored by pio-
neering groups such as the League of Automated Music Composers and The Hub [8].
More recently, these networks have also been explored within the realm of telemat-
ics, employing the internet as a medium for musical collaboration [16]. Weinberg [21]
presents the concept of an Interconnected Musical Network (IMN), live performance
collectives in which player interdependencies result in dynamic social relationships and
reactive playing. Weinberg states a successful musician network would promote “inter-
personal connections by encouraging participants to respond and react to these evolving
musical behaviors in a social manner of mutual influence and response”, positioning the
performance of group-based music as a social ritual. Additionally, exploring a biologi-
cal metaphor of the established network, Weinberg [21] states: “Such a process-driven
environment, which responds to input from individuals in a reciprocal loop, can be
likened to a musical ‘ecosystem.’ In this metaphor, the network serves as a habitat that
supports its inhabitants (players) through a topology of interconnections and mutual re-
sponses which can, when successful, lead to new breeds of musical life forms...”. This
parallels the key ecosystemic theme of Locus Diffuse and points back towards the cul-
mination and amalgam of these disparate practices as viable in fostering a connected
musical collaborative space.
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3 Artistic Intention & System Overview

Locus Diffuse introduces a simulated being that reacts to the movement of players,
permeating the environment as a traversable medium. Sonification of the system is
achieved when interacting with this mediating entity as well as through participant
movement in virtual space, and can therefore only exist/function through the symbi-
otic relationship of players to it and to each other. Control is not centralized to one
participant, nor surrendered to the simulated organism. This control facilitates the mu-
sical composition of space, sculpting a form which the simulated organism populates
spatially and aurally. This emergent structure and reactive behavior can be paralleled
within the participants of the social ritual of “musicking” [19], in which each player
has a sensory experience of the whole while also contributing to it. Participating within
the shared audio space means enacting this social ritual of musical play, thus the roles
and capabilities of players along with the function of environmental agents were estab-
lished such as to rely on all players. These inter-human and human-agent relationships
are critical to explore the resulting network structure. The simulation is contained within
Max, employing JS for directing agent positions and control data for grain sonification,
JWeb in Max is used for visual feedback in an HTML page, and audio synthesis control
patches additionally developed within Max.

3.1 Simulated Agents

Agent behaviour is modeled after the biological structures of Physarum polycephalum,
but does not represent an exact scientific model of the organism. Player positions are
represented as purple radial gradients within the simulation. Player positions act as
food deposits for the simulated agents, and movement results in variations of the en-
vironmental structure sensed by the collective simulated slime mold. The simulation is
informed by the research of Vogel et al. [20] and inspired by Jones [10], who outlines
the mechanics of Physarum polycephalum.

An initial population of 500 agents spawn in the centre of the simulated environ-
ment and are given a random starting vector. Each agent is equipped with two sensors
positioned at an angular offset of 45 degrees left and right, and a set distance ahead of
the agent. The simulated world is quite large (10002 pixels) in relation to the size of the
cellular bodies (2 pixels), necessitating sensors that have a far reach (default 350 pixels),
allowing them to “smell” food sources and trails from a reliable distance. As mentioned
in Jones [10], this large distance would normally be considered remote sensing sep-
arate from the body of an agent, however this distance also acts as the “overlapping
actin-myosin mesh of the plasmodium gel system”, allowing the cells to understand
their position relative to each other and to nutrient sources. Optimization of the agent
network is achieved through a decaying chemoattractant trail deposited and sensed by
each agent. Trails are deposited when an agent senses food or another trail, resulting in
deposits towards food. As trails diminish over time, an established network is strength-
ened when searching agents return from an unsuccessful search, or travel along the
stream, continually depositing additional trails. Agent sensors check for light values
representing chemoattractant strength, average the data collected, and then determine
the direction to face. Agents remember the last strongest “smell” they’ve sampled and
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choose what to do based on the current reading, always orienting towards the highest
value. Agents are in search of energy to keep moving and find more food. Each agent
mimics the cytoplasmic streaming behavior of a slime mold, and represents a theoreti-
cal main concentration node of this cytoplasm. Energy is a value held by each agent and
player attractant node, which maps to qualities of each granular sonification, movement,
and rotation speed. Losing energy will cause them to slow or enter a hibernation-like
state when approaching zero. Agents which gain energy again can be “revived” from
this hibernation state if passed over by a player. Simulated agents actively gain en-
ergy while upon a player, while passively losing energy during movement/wandering
between nodes. Players regain energy by being in close proximity to others. Agents
keep individual energy values as opposed to distributing energy, allowing for unique
sonifications based on the amount of energy one contains.

Fig. 1. Human and machine interaction with resulting data flow to sonification

3.2 Sonification

Unique source material was used to ensure an identifiable timbre for each player. Play
sessions were done in two waves and audio sources were edited between waves for both
refinement of sonification aesthetics, and to gauge changes in play due to these varied
timbres. Wave 1 sources were textural in nature, using viscous drips, synth drones, run-
ning water, and a filtered conversation as audio material. Wave 2 sources were chosen
to result in crisp sonification - timbrally in line with clicking, dripping, droning, and
swarming noises. Sonification of a given audio grain was triggered by an instance of
an agent “eating” at a particular player location, when an agent takes energy from the
player’s representational chemoattractant. The sounding potential of a grain triggering
is randomized to a 1 in 500 chance upon an agent eating to avoid continuous audio
output from a single agent, while also mimicking variance in time needed to break
down and process energy from food sources (i.e. a second artistic liberty taken with the
model). Messages are sent from the logic JS running in a JWeb, routed to one of four
granular synthesis engines, corresponding to a different player. These include the en-
ergy value of the agent, and the player ID acting as their source of energy. The granular
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synthesis patches contain a Petra buffercloud object [13], allowing for accurate single-
grain firing (5-50ms long). Energy values are mapped to a pitch multiplier of the source
material and gain level. As energy values range from 0 - 100, values are scaled to an ap-
propriate pitch range multiplier between 0.5(±0.2) and 1.7(±0.2), and gain ranging from
-30dB to 0dB. Granular synthesis output is then spatialized to the corresponding player
position. Player movement is sonified by high frequency sine tones. Unique frequencies
are assigned per player, then modulated based on movement speed, with slower move-
ments being modulated down (with higher gain), and faster movements modulated up
(with lower gain), which may produce a beating depending on relational position/speed
of multiple players. These tones are spatialized in a virtual binaural space using IR-
CAM’s Spat [3].

Fig. 2. Stream view of the simulated environment depicting State 4 (participant names censored)

3.3 Networked Interaction & Visualization

Accommodating different devices and network connections was essential in order for
public accessibility to players and audience. Control of player movement occurs in the
browser through a provided URL, and can be accessed with a browser or touch enabled
device. The interface contains a panel for each player consisting of identical controls,
including a centre square for position input, and a right-hand slider for vertical move-
ment. The left-hand boxes show spectroscope representations of current sonic activity
for each participant. Visual output of the system (Fig. 2) was hosted on a public live
stream. This situates the stream as a centralized audio and visual hub for the experience
of the instrument, and resulting sonic ecosystem.
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4 Survey

Play sessions were held in two waves as open calls on set dates, and public exhibitions
following the weekly electro-acoustic improvisation series DisPerSion Relation X. The
first wave of play sessions focused on a single behavior state of the agents, while the
second wave presented players with four varied states. Sessions lasted roughly 25 min-
utes (with some lasting up to 60 minutes). Following play, participants were asked to
complete an anonymous web form. As Wave 2 was centered around four different be-
havior states, the response form was updated to include questions on state comparisons.
Questions focused on perception of the system from two perspectives: relations with
other players and the resulting sonification. The questions for Wave 1 (W1) were pre-
sented as follows:

1. What was your sense of playing in this virtual environment?
2. What was your sense of connection to the others in the virtual space? (Other players

or agents)
3. How did you perceive your own “voice” while playing? (Location, timbre, relation

to environment and others)
4. How would you describe your ability (or lack of) to perform expressive musical

action?

Wave 2 (W2) introduced states which altered agent trail decay, sensory distance,
“death” threshold, birth odds, and agent energy decay. Players were not primed on the
behavior of each of these states. The transition between each state was announced to
prompt the players that they will be interacting with new behavior. States progressed
sequentially through 1-4, but could be revisited following the session. The experienced
states were:

– S1 - Solitary: Fast trail decay, low sensory distance, default death threshold, low
birth odds, and default agent energy decay

– S2 - Needy: Slow trail decay, low sensory distance, lower death threshold, high
birth odds, and very fast agent energy decay

– S3 - Lively: Fast trail decay, high sensory distance, default death threshold, high
birth odds, and slow agent energy decay

– S4 - Starving: Slow trail decay, high sensory distance, lower death threshold, low
birth odds, and very fast agent energy decay

The names provided before the description of each state were given by the first
author through personal interpretation of their behavior and were not told to players.
Questions from W1 were all asked again, including “For each state:” before a given
question. One additional question was asked:

– How would you describe the behaviours of each state? (changes in response, char-
acteristics, etc)

Answer lengths were not prompted to be short or long, allowing players to provide as
much detail as they wished. 10 player responses were recorded for both W1 and W2,
and a thematic analysis was conducted on this data. Most players had little or no prior
experience with participatory musical systems. A small amount had extensive prior
experience with improvisational musical play.
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5 Responses & Analysis

Participant responses outline a range of interpretations for Locus Diffuse, as various
natural metaphors were attributed to the audio and visuals. One participant noted “I
definitely had the sensation of being immersed in a medium – fluid. The dynamics of
the particles, of course, were responsible for evoking this sensation, but so were the
sounds and the way that they transformed”. While players were primed that the agent
behavior was emulative of slime mold, their natural metaphors for the agent behavior
tended towards more commonly encountered phenomena of the natural world. Natural
processes such as swarms of bugs, flowing rivers, and immersion within a fluid sub-
stance were noted as a reaction to both the aural and visual content of the simulation.
While similar sources were used as granular input across both waves, the sense of a
natural process was far from 1:1 with source audio, and rather was in reaction to both
timbre and agent behaviour. This points to the perception of an emergent sonic ecosys-
tem that is influenced both by variations of the sound source and by agent behavior.

Interaction with agents, guided by personal connection/narrative, was also a key
feature of participant responses. One player noted, “There was a certain appeal to do-
ing things like building ’bridges’ between myself and other users, and seeing the cells
speed up and slow down made it feel like we were almost taking care of the cells in
a way”. This was exemplified within states S2 (Needy) and S4 (Starving) of Wave 2,
where accelerated agent energy decay and earlier death resulted in huddles of player po-
sitions protecting a core population of agents. Players attributed direct and/or implied
characteristics towards agent and environmental behavior throughout each of the states.
Players would alter the target of these characteristics, displaying that these changes
were felt on either an agent or environmental level. Environmental-related characteris-
tics tended to be a product of the visual aspects of the system, noting “busyness” and
“growth” of agents within S2 & S4 when trail decay was reduced. For agent behav-
ior characteristics, S1 (Solitary) was perceived as “independent”, resulting in localized
areas of attraction with distant agents acting indifferent to the presence of energy. One
response attributed ‘interest’ as a quality the agents possessed, stating that “agents seem
to be highly invested in the actions of players when they are sharing energy, but seem to
actively avoid players who are not working together to share energy”. One player noted
that these states “rewarded stillness”, where one’s interaction felt more impactful to the
sonification by waiting and allowing the agents to move towards and through them.

Audio and visual cohesion of the system was found to be necessary for players to
internalize a complete understanding of the resulting agent behaviors. An interesting
trend is shown in some player responses to seemingly lean towards a visual character-
ization of the system state vs an aural one. This can be seen in responses comparing
S1 and S3 (Lively). Reports on each states sonic activity were contrasting, noting S1
as reserved and stable, but S3 as busy or chaotic. Although perceived as sonically con-
trasting, most participants noted S1 and S3 being similar due to visual qualities of the
simulation, mainly trail decay rate. Similar reports occurred between S2 and S4 due to
their low trail decay rate. This visual bias may also be a product of the relatively low
familiarity of participants with musical systems/play experience.

Varied experiences of connectedness were reported: a lack of connection, connec-
tion mainly with the simulated agents, and connection to the meditative qualities of
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communal movement. Reports of a lack of connection were attributed to a desire to have
dialogue with fellow players (voice/text) in order to coordinate, or again due to a focus
upon the visuals, noting “Being able to see where other players were going and patterns
they were following made the connection much strong across all states”. The second
focus is discussed above (“interaction with agents”). The third focus was on immersion
in the system and the sonification of player movements, which divided into two groups.
The first noted a distinct gravitation to the mediating agent system and its behaviours,
with one participant stating “I could feel each of there positions in a unique way. It
was as if they were taking up space in a room”. The second focused on inter-human
sounding while immersed in the mediating virtual space, with one participant stating,
“I found myself being more consciously aware of the other players’ positions/motions,
and adjusted my own motions in relation to theirs”.

6 Conclusions & Future Work

Blending aspects of sonic ecosystems, agent-based musical systems, multi-user instru-
ments, and networked performance to establish a communal musical play context, Lo-
cus Diffuse depicts these disparate fields of study as complimentary in their nature to
establish compelling emergent behavior through various levels of interaction, sounding,
group structure, and process. Employing natural computing for the mimicry of biolog-
ical systems allows for flexible and dynamic collaborative musical agents by speeding
up natural processes to allow them to be used in real-time musical computation tasks.
The provided system overview allows for detailed understanding of agent mechanics
and human/machine interplay resulting in sonification. Play sessions with Locus Dif-
fuse resulted in four key observations from participant responses:

– The perception of a sonic ecosystem was tied to variation in sound sources inter-
sected with agent behavior.

– Narrative-based personal connection between players and agents mediated interac-
tion characteristics.

– There was a bias towards a visual understanding of the system vs an aural one.
– The “locus” of experiences of connection were more varied, ranging from a lack of

systemic connection, focus on inter-human collaboration, to human-agent collabo-
rative sounding.

Each of these outcomes is a product of the interaction between system behavior, player
action, and aural & visual aesthetic decisions, constituting various networks at play
between the project’s amalgam of practices, communal musical goals, and telematic
structure.

In a post social distancing time, an in-person room scale version of the system will
be created in order to explore the translation of the current network-based musical in-
strument design back into the originally intended space. Translating to this physical
space, perceptions related to embodied movement as a control source can be explored
within the established agent-based sonic ecosystem. Further research into potential nar-
rative outcomes of inter-human and human-agent-based collaboration may yield inter-
esting results within sonic ecosystems. Sessions aimed at varied levels of musical expe-
rience may reveal interesting trends related to aural vs. visual attention, and attention to
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inter-human or human-agent interactions. Additional telematic sessions with reduced
visual feedback may also shed light on how much a purely sound-based system can
express these ecosystemic interactions.
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Abstract. The karlax is a gestural controller developed around 2010. Since its
inception, it arose substantial interest among composers and continues to be com-
monly used in solo and group performances. One of the reasons for its longevity
is its great adaptability especially in interaction with acoustic instruments. This
article analyses six chamber music pieces for karlax and acoustic instruments by
comparing the sound and visual results and the writing process (scores, patches,
and mapping). We discuss different composition strategies through the use of in-
teraction metaphors from the computer music literature. These metaphors prove
to be powerful analysis tools that allow describing the use of a digital music in-
strument (DMI), such as the karlax, in a chamber music context.

Keywords: Mixed pieces, Computer Music, Digital Music Instruments (DMI),
Electronic Chamber Music, Input Devices, Mapping

1 Introduction

Though several hundred interfaces for musical expression have been developed and
described in a variety of venues, most notably in the last two decades at the International
Conference on New interfaces for Musical Expression (NIME)3, relatively few articles
discuss how these interfaces ares used in actual musical contexts, for instance [1], [2],
[3] and [4]. Indeed, the use of DMIs is not often discussed from the perspective of
artistic and musical composition. In other words, the ”M” in NIME: why don’t we talk
more about music performance with musical interfaces, beyond sound control? In part,
this is the consequence that most of the interfaces described in the literature have short
life spans and/or are mainly used by their designers [5]. In this sense, the karlax offers a
particularly rich subject of study with an existence of more than ten years, a community
of regular users from different musical cultures and several significant creations, notably
with acoustical instruments, incorporating some form of music notation.

The karlax is an input device that combines several sensors: continuous keys, ve-
locity pistons, axis, switches, and three axes of accelerometers and gyroscopes (Fig. 1)
4. ”Its ability to detect subtle as well as larger gestures, continuous as well as event-
based control, its low latency and high bandwidth, its reliability and portability” has

3 www.nime.org
4 www.dafact.com
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been praised [6]. Like many musical interfaces that output sensor data but which do
not have a pre-defined sound, the karlax is defined by its control characteristics, i.e., its
gestural identity instead of a given sonic identity. This opens up unlimited musical pos-
sibilities but requires the composer to describe the sounds controlled and the mapping
between sensor data and sound generation to be used in each context. A digital musi-
cal instrument (DMI) is composed of the group: control interface + mapping + sound
generation [7].

Fig. 1. Front and rear views of the karlax (www.dafact.com)

In this study, we analyze a corpus of six pieces for karlax and acoustic instruments
from audio and video recordings, scores, Max/MSP patches, articles, presets, etc. We
have identified three compositional models that allow us to define the main areas of
inspiration for each of the pieces. In a second step, we will discuss excerpts in the corpus
by detailing the action of the karlax and its interaction with the acoustic instruments
thanks to interaction metaphors from Computer Music.

2 Objectives

The objectives of this article are:

1. Study of six pieces for karlax and acoustic instrument(s) including analysis of
sound synthesis, mapping, gestures, and scores.

2. Among these pieces describe the ”role” of the karlax by identifying compositional
models.

3. Analyse the use of the karlax and its interaction with acoustic instruments in ex-
cerpts of these pieces thanks to Computer Music metaphors.
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3 Corpus of Pieces

We have selected 6 pieces written between 2013 and 2018 that combine the karlax
controller with one or two acoustic instruments among a flute, a violin, and a cello.
Five of the six pieces of the corpus have been commissioned by the Fabrique Nomade
ensemble and have been performed by it. This ensemble is an ”electronic chamber mu-
sic ensemble that wishes to rediscover the gestures and listening of classical chamber
music”5. In this regard, ”each musician is independent and has total control over their
acoustic or electronic instrument” (each instrumentalist has their own laptop and their
own sound broadcasting system). This means that acoustic instruments performers trig-
ger their own electronic part (most of the time real-time processing) thanks to a midi
pedal and that the karlax cannot process in real-time the acoustic sound of an instru-
mentalist. This is not the case for the sixth piece where the karlax transforms the sound
of the violin in real-time.

A Fogg by Lorenzo Bianchi for violin, cello and karlax, 2013 (performed by Fabrique
Nomade ensemble)

B Frottement, Bourdon, Craquement by Francis Faber for cello, karlax and electronic,
2013 (performed by Fabrique Nomade ensemble)

C Le Patch Bien Tempéré III by Tom Mays, for flute, karlax and real time electonic,
2013 (performed by Fabrique Nomade ensemble)

D Ripples Never Come Back by Michele Tadini for violin, cello and karlax, 2013
(performed by Fabrique Nomade ensemble)

E Discontinuous Devices ”In-between” by Michele Tadini for cello and karlax, 2015
(performed by Fabrique Nomade ensemble)

F Le Violon, l’Oeillet et le Bambou by Raphaël-Tristan Jouaville, for violin and kar-
lax, 2018

4 Composition models

Among these pieces, we have identified three compositional models that represent three
main sources of inspiration for the composers: model based on acoustic sounds, model
based on electronic sounds and karlax as model. These allow describing the main “role”
of this controller in relation to the other instruments.

Model based on acoustic instruments sounds
For several pieces in the corpus, the acoustic sound of the instrument(s) with

which the karlax plays is used as the basic composition material. For example, in the
piece Fogg (A), the sound synthesis of the karlax is realized through an additive syn-
thesis from the spectral analysis of several violin pizzicati with different ”preparations”
(addition of objects like pegs attached to the string). The karlax triggers and controls
processes related to the spectral content of pizzicato sounds by pressing continuous
keys (control of the spectral envelope) (Fig. 2).

Other examples are pieces where the karlax plays sounds very close to the sounds
played by the instrument(s) it interacts with. In this way, the acoustic instrument is

5 www.fabriquenomade.com
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“augmented” by the action of the karlax. For example, in the third part of Discontinuous
Devices (E), the karlax activates flautando and harmonics cello samples by pressing the
continuous keys. Shorter samples of the same type are also triggered by the pistons. This
forms a harmonic environment for the cello, which performs more percussive figures
like jettatti and glissandi that let the natural harmonics of the open strings resonate. With
the same idea, in Jouaville’s piece (F), the karlax plays a physical model of a string by
activating the pistons in a consecutive way whose pitches are previously set up (String
Studio module). In most of the piece, the karlax highlights and develops the melodic
contour of the violin and/or creates a harmonic accompaniment (Fig. 3).

Fig. 2. ”Shaping” of the spectral envelope with karlax continuous keys in Fogg by Lorenzo
Bianchi (mes. 68-69, karlax part) (with the permission of the composer). Each staff line rep-
resents the activation of a continuous key that will control the volume of a group of oscillators.

Fig. 3. Results of pitches played by the karlax pistons with the corresponding fingerings in Le
Violon, l’Oeillet et le Bambou, by Raphaël-Tristan Jouaville (mes. 7) (with the permission of the
composer). See video from 00:30 to 00:32 www.youtube.com/watch?v=IrCmiwwFSUs

Model based on electronic sounds
This type of composition model is the most common in the selected pieces. In this

category are represented the treatments and manipulations associated with electronic
music such as filtering, delay, granular synthesis, additive synthesis, ring modulation,
arpeggiators, freeze, etc. Also, this control interface is often associated with the process-
ing of electronic synthesis. By assigning certain parameters of the sound synthesis to
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different sensors, the karlax can “drive” processes in real-time and bring an expressive
dimension to the transformations. In this model, the sound of the karlax is perceived as
independent from the acoustic sound of the instruments. For example, in the piece Le
Patch bien tempéré III (C), the composer focuses on complementary electronic tech-
niques such as harmonizers, delays, and ”paf” synthesis based on voice formants 6. In
this piece, the input device activates different synthetic voices and modifies parameters.
In general, the accelerometer data corresponding to the forward, backward movements
are correlated with dynamics (brightness and intensity) and the left-right movements
are correlated with pitch (glissandi) while the central axis applies a speed tremolo [8].
In the score are noted the part of the flute, the karlax movements laid out on four staves,
and the acoustic results (Harmonizers and Synthesis staves) (Fig. 4).

Fig. 4. General score of Le Patch bien tempéré III by Tom Mays (mes.6) (with the permis-
sion of the composer). The karlax part combines -movements (“Gesture” staff with circle sym-
bols) which controls intensity, brightness, and pitch-bend of the sound synthesis, -rotation of
the axis (dotted lines) which control a speed tremollo and -continuous keys depression (”Right
Hand” and ”Left Hand” staves with thick lines) which activates “paf” synthesis voices. The
numbers at the top of the score represent the time in seconds. See video from 01:44 to 02:00
https://vimeo.com/80464641

6 Phase Aligned Formant developed by Miller Puckette in 1995
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Karlax as model
The design of the karlax can also inspire the composition and constitute a model

in itself. Indeed, this controller is conceived by being inspired by the keys system of
wind and keyboard instruments (pistons and continuous keys) enriched with an axis
(with bends) and movement sensors (accelerometer and gyroscope). The instrumental
aspect of the karlax is developed among others in the introduction of the Faber’s piece
(B). Indeed, the instrumentalist performs a “call” thanks to the pistons produced by
short harmonic synthetic sounds. The play of the karlax can be compared to the play of
pistons of a trumpet (Fig. 5). Also, the possibilities of the karlax can inspire the ”tra-
jectory” of the piece. For instance, Discontinuous Devices (E) starts with an extensive
use of the pistons and then in the second section the karlax triggers and controls long
sequences through the accelerometer and gyroscope data, making the karlax gestures
more and more expressive.

Fig. 5. “Call” played by the Karlax pistons in Frottement, Bourdon, Craquement (mes. 1-2) (with
the composer permission). See video from 00:00 to 00:04 https://vimeo.com/118148219

5 Interaction Metaphors from Computer Music

In this part, we analyze excerpts of the corpus pieces thanks to metaphors from Com-
puter Music. We have selected five metaphors from three articles: [9], [10], [11], for
their relevance to describe the action of a gestural controller such as the karlax (particu-
larly in interaction with acoustic instruments) and for their capacity to give an overview
of compositional strategies.

“Shaping” [Caramiaux et al., 2014]
Shaping “refers to scenarios where performers control sound morphologies by

“tracing” in the air those salient sound features they desire to control”[9]. This metaphor
is described as the “transfer of variations into a gestural morphology” and as synchro-
nization of sound with movement. It is widely used in the pieces thanks to Karlax mo-
tion sensors but also with continuous keys. For example, in (C), the karlax imitates the
distortions of the flute sound (created by harmonizers, flatterzunge, etc.) by “shaping”
the “paf” synthesis. At the same time, the ancillary gestures of the flutist seem to im-
itate the gestures of the controller (Fig. 4). With a more reduced gestural expression,
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the continuous key activation allows the karlax performer in (A) to “shape” the spectral
envelope in a differentiated way to provide a harmonic accompaniment to the violin and
the cello (Fig. 2).

“Catch and Throw” [Wessel & Wright, 2002]
This strategy of interaction “involves the notion of selectively trapping musical

phrases from an ongoing performance, transforming them in some way, and then send-
ing these transformed materials back into the performance”[10]. This way of interac-
tion, which could be defined as delayed real-time processing, is exploited in improvisa-
tional situations by Tom Mays in the early 2010’s, where the direct sound of the acoustic
instrument is captured, transformed by the karlax and broadcast in real-time7. This type
of interaction is also employed at the end of Jouaville’s piece (G) where the acous-
tic sound of the violin is processed by resonator, delay, and pitch shift modules (GRM
Tools) whose parameter nodes are controlled by the karlax movements. This brings a
sonic halo to the violin8.

“Fishing” [Caramiaux et al., 2014]
This metaphor is related to the learning stage in gesture recognition. When a ges-

ture is recognized by the dedicated program, a sound will be “fished” out to be played.
One can compare this scenario of interactions with certain compositional strategies. For
example, at the beginning of (A), several violin and cello actions with obvious gestural
characteristics such as jettato, glissandi, strokes on the body of the instrument seem
to be “recognized” by the karlax, which reacts by imitating gestures, triggering and
transforming nearby sounds9.

Musical tasks [Wanderley & Orio, 2002]
In the same idea as the composition model based on instrumental playing pre-

sented above (see Karlax as model), the article [11] proposes two levels of metaphors:
Musical Instrument Manipulation Metaphor and Other Metaphor. In the first category
are listed the interactions metaphors that refer to traditional instrumental playing (iso-
lated notes, basic musical gestures like glissandi, vibrato, musical phrases, rhythmic
playing, etc.) that appear for example in Faber’s piece with the ”call” (Fig. 5). In the
second category, the authors evoke the actions of triggering of sequences but also their
organization in time: synchronization, envelope control, continuous modulation fea-
tures, etc.

“Space” [Wessel & Wright, 2002]
The purpose of using a control interface like karlax in this type of strategy is to

“suggest musically interesting trajectories for gesture [10]”. Moreover, the article em-
phasizes the importance of proximity and timbre in the perception of these trajectories.

7 In this video, the karlax controls the transformations of the acoustic sound of a Sheng, a mouth-
blown free reed instrument: https://www.youtube.com/watch?v=fg9TgbI4gTM

8 See video from 05:43 to 06:42 https://www.youtube.com/watch?v=IrCmiwwFSUs
9 See video from 00:00 to 01:10 https://vimeo.com/67049071
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In addition, various strategies to suggest movements and trajectories are employed by
the composers of the corpus. For example, in Ripples Never Come Back (D), the com-
poser evokes a distancing through repeated sequences where the violin and cello instru-
ments begin a quasi homorhythmic figure which is “taken up” by the electronic part
performed by the karlax in the form of arpeggios towards the high register. The karlax
controls a flow of notes produced by a subtractive synthesis: the axis controls the pitch
of the arpeggio, the continuous keys control parameters like volume, filtering or speed
while the inclination combined with a key activation controls the envelope (Fig. 6).

Fig. 6. Sequence that evokes a distancing in Ripples Never Come Back by Michele Tadini (mes.
32) (with the composer permission). See video from 00:48 to 01:00 https://vimeo.com/72995021
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6 Discussion

The use of compositional models and Computer Music metaphors provide a framework
and powerful analytical tools to apprehend pieces that appear at first sight very complex.
It allows to categorize certain roles of the karlax in this precise context, with a small
number of acoustic instruments, and allows to discuss situations.

For example, the piece (A) seemed to us to belong to both the first and the second
composition model, depending on whether one considers the process of composition or
the sound result. Indeed, the process of additive synthesis and the fact that the “target”
sounds are prepared (with the addition of pegs) make the sound synthesis played by
the karlax particularly distant from the acoustic sound of the violin. From a perceptual
perspective, we would then need to determine whether or not the timbre of the sounds
played by the karlax “blends” with the sound of the instrument and determine what
allows us to assert this. For the other examples given for the first model: (E) and (F),
we can use the terminology of “timbral augmentation” as presented in [12].

The selected metaphors are thought in real-time interactions context. While the
composition process necessarily evolving in a delayed time, we have seen that these
metaphors are proper to comment on typical situations of the pieces of the corpus.
Firstly, because they offer situations of real-time transformations and secondly because
the composition strategies in terms of dramaturgy can be compared to situations of im-
provisations. Moreover, the setup chosen by the Fabrique Nomade ensemble influences
these strategies. As the instrumentalists are independent and trigger more or less random
processes (for example delays), the composer tends to opt for ”encompassing” strate-
gies, highly describable by the metaphors [13]. On the other hand, these metaphors are
limited to comment precisely on temporal and rhythmic aspects as specified in the arti-
cle [11]. In addition, metaphors that qualify the action of a controller such as Shaping,
or Musical Tasks facilitate the interaction with the instrumentalist(s) and the “reading”
of the piece by the spectator/listener as they help to identify acoustically and gesturally
the part played by the karlax.

Another important aspect to qualify the action of the karlax is its notation. De-
pending on the project of each piece, composers adopt a prescriptive (oriented on the
action of the karlax player) and/or descriptive method of notation (which reports the
acoustic result)[14]. As a reference point, the composers of the corpus use the basics
of karlax notation presented in the article [6]. We can mention however the more prag-
matic approach described in the Jouaville’s piece (G) which consists in assigning events
in order of appearance to a simple range of fingerings and allows to visualize the pitches
played by the karlax and movements on a single staff (Fig. 3). Also, it is particularly
interesting to relate the approach of the composer Andrew Stewart notably in his piece
Ritual (2015) for karlax solo, based among others on gestures categorization and a spa-
tial representation of space in the form of a grid [15]. In general, composers add rarely
information related to mapping and sound synthesis, which would allow performers to
further appropriate the karlax instrument. Simultaneously, the notation must be practi-
cal and represent the composer’s intention in a precise and concise way. As such, an
indication in the score of the metaphorical context, as presented above, would provide
valuable information about the way(s) the karlax is played and how it interacts with
other instrument(s).
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7 Conclusions

In this article we presented an analysis of six pieces for karlax and acoustic instruments.
Three models of compositions have been identified and five metaphors from Computer
Music have been proposed to characterize typical musical situations. To go further, it
seems particularly interesting to deepen the analysis of these pieces by providing a de-
tailed description of their conception and by comparing them both in terms of sound
synthesis, mapping, gestures, notation, and interactions. In addition, it would be inter-
esting to compare the use of the karlax with other DMIs like T-Stick in the same type
chamber music context.
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Abstract. In this study, we propose a method for generating 3D skeleton motions
of a double bass player from musical score information using a 2-layer LSTM
network. Since there is no suitable dataset for this study, we have created a new
motion dataset with actual double bass performance. The contribution of this pa-
per is to show the effect of combining bowing and fingering information in the
generation of performance motion, and to examine the effective model structure
in performance generation. Both objective and subjective evaluations showed that
the accuracy of generating performance motion for double bass can be improved
using two types of additional information (bowing, fingering information) and
improved by constructing a model that takes into account bowing and fingering.

Keywords: LSTM network, Performance motion generation, 3D model, Double
bass

1 Introduction

Double bass plays an important role as the foundation in various forms of ensemble
music such as orchestral music, chamber music, wind music, and jazz. In addition, the
double bass plays a solo role while accompanied by the piano or orchestra. In the case
of the bowed stringed instrument to which the contrabass belongs, there is so much
visual information that the timing of the sound can be shared among the players by the
motion of the right arm, and the pitch can be estimated by the shifting and fingering of
the left hand.

In an actual ensemble performance, visual information is an important element for
conveying performance timing and specific musical expressions to other players and
for facilitating ensemble performance [1]. In particular, visual information is consid-
ered to be highly important in situations where many people are playing together in an
ensemble, such as in an orchestra or wind band.

In spite of the fact that visual information is one of the most important elements
in playing music as described above, among the major study fields of music infor-
mation processing, the studies on automatic performance generation (i.e. performance
rendering) mainly focus on performance sounds, and only a few studies focus on visual
information of performances.

Therefore, in this study, we aim to generate performance motion for the double bass.
There are two major technical issues: the generation of natural playing motion and the
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naturalness of the 3D model appearance and rendering accuracy. In this study, we first
focus on the former, which is the more essential issue.

There have been some studies on automatic performance generation focusing on
visual information, but they have targeted piano [2] and violin [3, 4], and generated per-
formance motion using actual performance sounds or MIDI as input data. In the case
of a bowed stringed instrument, it is considered that it is difficult to generate the perfor-
mance motion such as bowing and fingering from the pitch information because motion
is not uniquely determined from the pitch information. In order to solve this problem,
we propose a method to generate performance motion using the musical score informa-
tion that includes not only pitch information, but also bowing and fingering information
that greatly affects performance motion. Some methods have been proposed for auto-
matically estimating fingering from musical score [5], and a method combining these
studies would be promising, but in this study, we suppose these additional information
are added manually.

Since there is no suitable dataset for this study, it is necessary to construct a dataset
of musical scores and 3D motions. In previous studies, joint points extracted by using
body tracking technology of video data were used as motion information [2–4]. This
approach is also superior in that it does not interfere with the playing motion. However,
in this study, which targets a large instrument such as a double bass, it is considered
difficult to obtain accurate performance motion using this technique because part of
the performer is hidden by the instrument. Therefore, we collect motion data using the
inertial motion capturing device.

In this study, we adopted LSTM (Long Short Term Memory) network as a model
for the conversion between musical score data and motion data. In particular, we verify
the effect of using additional information (bowing and fingering information) as input
data by comparing the accuracy of the generated motion only from pitch information
and with additional information. Furthermore, we design a series model that learns
the right arm motion from the bowing information and the left arm motion from the
fingering information independently, and verify the effect of changing the structure of
the model.

2 Related works

Li et al. [2] proposed a method to generate a pianist’s 2D motion from MIDI sound
sources of a piano performance. They used a Convolutional Neural Network (CNN) to
extract the stream of the piano performance and the features of the beat structure, and
used these as input data to the 2-layer LSTM network, and used the 2D performance
motion from a fixed position as output data. In the subjective experiment, no significant
difference was found between the human motion and the generated motion in 75% of
the songs, indicating that the system does not generate extremely unnatural motion.

Liu et al. [3] proposed a method for generating violinist’s performance motion from
actual performance sounds. In this method, a model for predicting the bowing of the
right arm and a model for predicting the expressive motions of the whole body were
constructed from the Mel-spectrogram1 obtained by performing STFT (Short Time

1 Spectrogram in the Mel scale, a perceptual measure of pitch in human hearing.
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Fourier Transform) on the input sound source. And a model for predicting the posi-
tion, fingering, and strings of the left arm from the data obtained by pitch detection is
constructed independently. In addition, a model that predicts the position of the left arm,
fingering, and strings based on the data obtained from pitch detection was constructed
independently, thereby realizing the generation of violinist’s full-body performance mo-
tions.

3 Proposed method

Our model is based on a previous study by Li et al. [2]. The difference between our
model and the previous study is that the output data is not 2-dimensional but 3-dimensional,
and the input is not derived from MIDI but from score information, which is a sequence
of symbols. We need to consider a model that addresses these differences.

We construct a 2-layer LSTM network, and use MAE (Mean Absolute Error) as
the loss function and Adam [6] as the optimize function. The output vectors of the
LSTM network are fed to all the coupling layers to obtain the positional and rotational
information of each joint point in each frame in 6 dimensions.

We also attempt to apply the framework constructed by Liu et al. [3]which consists
of three models: a bowing model for the right arm, a position model for the left arm,
and a representation model for the upper body. In this study, since we are trying to gen-
erate performance motion using manually additional information (bowing, fingering)
rather than performance sound data, we can treat these information as more accurate
and reliable than that obtained by estimation.

Extract the sequence of pitch, bowing, and position from the musical score informa-
tion as shown in the Fig. 1 into a format that can be input to the LSTM network, each
with the same period. As a result, the pitch sequence is a 30-dimensional sequence
consisting of {E0, F0, . . . , A3}, the bowing sequence is a 2-dimensional sequence
consisting of {down-bow, up-bow}, and the position sequence representing fingering
information is a 12-dimensional sequence consisting of {0, 1, . . . , 11}.

The three sequences extracted from the above score information are used as input
data, and the sequence representing body motions are used as output data to construct a
model. The goal is to verify the significance of each data and to design a model that is
suitable for learning. By comparing the accuracy of the generated performance motion
by the designed models, we can verify whether the bowing and position information
used as additional information are significant in improving the accuracy of the generated
performance motion.

11
8 11

4 4 8

0 1 1
0 0 0 00 0 00 0

position
number

down-bow up-bow

Fig. 1: Sample of musical score
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input output
Model1 pitch(30-d) upper body(90-d)
Model2 bowing+position+pitch(44-d) upper body(90-d)
Model3 bowing(2-d), position(12-d), pitch(30-d) right arm(24-d), left arm(24-d), other(42-d)

Table 1: Structure of the three models

The structure of the three models we designed is summarized in the Table 1.

4 Experiment

4.1 Dataset

We use ten pieces from the collection of exercises “Franz Simandl / 30 Etudes for the
Double Bass” from No.1 to No.10 for the training data, and three pieces from No.11 to
No.13 for the test data. The total time to play these 13 pieces at the tempo specified in
the score is about 30 minutes.

Motion data We use an inertial motion capture PERCEPTION NEURON made by
NOITOM to construct a dataset of the performance motion of one male double bass
player. The bvh file is a motion capture data file format proposed by Biovision, and
consists of two parts: a hierarchy part describing the tree structure of each joint point,
and a motion part describing the motion data. In this study, the hierarchy part was
defined as the 15 joint points of the upper body with the hip as the parent node. And
since the motion part describes the position information and rotation information of
each of the 15 joint points, it is represented by a 90-dimensional sequence. In this
dataset, the coordinates of the parent node are set to the origin.

Since the experiment was intended to be performed at the tempo dictated by the
musical score, we recorded the music performance played to a metronome. The frame
rate was set to 30 fps in accordance with previous research [4]. Since the accelerome-
ters at each joint point may deviate from their default positions due to motion during
performance, calibration (correction of deviations in sensor position information) was
performed after each etude was recorded.

Musical score data The musical score data was authorized for the target etudes in
MusicXML format [7] using the score authoring software MuseScore. Since this study
does not target the generation of expressive motion, we exclude tempo changes, vol-
ume marks, and detailed articulation instructions such as tenuto and staccato from the
authoring.

In the original score, there is no bowing and fingering information for all notes, so
we added symbols as bowing information and position numbers as fingering informa-
tion, as shown in the Fig. 1. The position number in this case is not the actual position
where the string is pressed, but the position of the index finger when pressing the string,
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and is defined as position number(= {0, 1, · · · , 10, 11}), starting with the lowest pitch
position.

Extract a 30-dimensional pitch sequence, a 2-dimensional bowing sequence, and
a 12-dimensional position sequence for every etude in order to get the pitch, bowing,
and position information from the xml data into a format that can be input to LSTM
network. In this process, each information was extracted at 30 fps to match the frame
rate of the motion data.

4.2 Objective evaluation

For objective evaluation, we compare the generated data with correct data (motion data
collected under the same conditions as when the data set was constructed), using the
following two criteria.

1. Average of the difference of coordinates at each joint point in each frame

2. Average of the ratio of the change between adjacent frame at each joint point

In the criterion 1, accuracy is verified by the difference of the amount of motion
of all joint points, so the smaller the value, the higher the accuracy. The criterion 2
takes into account the problem that the only evaluation based on the criterion 1 is not
sufficient because of the not so small difference in the amount of motion among joints.
The criterion 2 verifies the accuracy by the ratio, so the closer the value is to 1, the
higher the accuracy.

The results for the criterion 1 are shown in Fig. 2(a), and the results for the criterion
2 are shown in Fig. 2(b). From these two figures, it can be seen that the order of accuracy
is Model1 < Model2 < Model3.

4.3 Subjective evaluation

The subjective evaluation is based on the naturalness of the performance motion. In
order to make this evaluation, it is necessary to have a person who can concretely imag-
ine the performance motions of the player from the score information, so the subjects
of the evaluation experiment were limited to double bass players. After checking the
score, the subjects watched a movie of the generated motion data played on Blender. In
this evaluation experiment, the order of playback was randomized. A total of 16 dou-
ble bass players, 8 males and 8 females in their early 20s, evaluated the naturalness
in four levels: “1: unnatural”, “2: somewhat unnatural”, “3: somewhat natural” and “4:
natural”.

From Fig. 2(c),which show the results of subjective evaluation using a box-and-
whisker diagram, it can be seen that the order of accuracy is Model1 < Model2 <
Model3. This is consistent with the result of the objective evaluation.

5 Conclusion

In this study, we proposed a method for generating performance motions of a double
bass, for which it is difficult to predict performance motions from audio signals, by us-
ing musical score information (pitch, bowing, and fingering) as input data. As a result
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Fig. 2: Results of evaluation

of the experiments, it was demonstrated that there was a positive effect of providing ad-
ditional information (bowing and fingering), and that a higher effect could be obtained
by learning the right arm and the left arm independently from the bowing and fingering
information. As a future task, the generation of expressive performance motion is con-
sidered. In addition, the generation of realistic performance motions using 3D human
models will be useful for performance training for beginners.
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Abstract. We present an empirical study on embedding the lyrics of a song into
a fixed-dimensional feature for the purpose of music tagging. Five methods of
computing token-level and four methods of computing document-level repre-
sentations are trained on an industrial-scale dataset of tens of millions of songs.
We compare simple averaging of pretrained embeddings to modern recurrent and
attention-based neural architectures. Evaluating on a wide range of tagging tasks
such as genre classification, explicit content identification and era detection, we
find that averaging word embeddings outperform more complex architectures in
many downstream metrics.

Keywords: lyrics, word2vec, doc2vec, music tagging

1 Introduction

Song lyrics have been shown to be effective predictors of emotion [31], and can be
indicative of genre [25, 3, 32, 15, 16, 14, 13], mood [7, 32, 6, 8, 11, 2], music exploration
[29], song structure analysis [28] and other musical facets such as quality and release
date [22, 19, 3]. This makes them good candidate features for automatic music tagging
(assigning labels like pop, chill to songs).

In the literature Hu and Downie [7] use collections of n-gram word counts (along
with audio) for classifying mood. Mayer et al. [14] classify genre via rhyme analysis of
lyrics, and Van Zaanen and Kanters [26] re-weight the word counts using TF-IDF (see
2.2) to classify musical moods. Text in these studies is often represented in Bag of Words
format [7, 14, 15], where a vocabulary is built from a corpus and a song is represented as
counts of the corpus words [5]. To obtain a usable vocabulary size, words are typically
removed from the corpus if they appeared too often (stopwords such as the, a) or not
often enough (bespoke vocabulary and misspellings).

Bag of Words is a useful intuitive document representation, but does not account for
the fact that some words may have a low count in a document, yet still be considered
interesting from a corpus perspective (for example, the word algorithm in a corpus of
agricultural documents). Term Frequency Inverse Document Frequency (TF-IDF) [9]
accounts for this by multiplying Bag of Words by a factor representing how common a
word is in a corpus, and has also been explored in the music tagging context [26].

The methods above have some clear drawbacks. First, no semantic meaning is pre-
served or inferred between the individual words, meaning for example the model shares
no information between words such as love and adore. Second, the feature vectors can
also easily become large and sparse (due to large vocabularies), making their use in
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machine learning models unwieldy. Word2vec [17] mitigates both of these issues by
learning dense representations from a corpus, i.e. each word is represented as a point
in a low-dimensional space in which semantically similar words are close. The training
objective in this model is to predict either a missing word given the context (Contin-
uous Bag of Words) or vice-versa (Skipgram). Word2vec has been adopted in a wide
range of NLP tasks, including machine translation [24], sentiment analysis [33], and
text generation [1]; and in the Music Information Retrieval (MIR) domain has success-
fully been applied to explicit song detection [20], genre classification [10] and music
recommendation [27].

Although word order is considered in word2vec training, the algorithm does not
provide a method for representing a document - something which is often needed for
downstream tasks [3, 22]. One solution is to take summary statistics of the constituent
word embeddings (i.e. simple averaging [27]). Another approach from the NLP liter-
ature is Doc2Vec [12], which learns paragraph-level representations of documents via
an additional model input representing paragraph indices. Finally, it is possible to train
the aggregation of word into document embeddings, for example using the final state of
a recurrent neural network or the output of a self-attentive probe layer [30]. Advanced
models such as these were used by Alexandros Tsaptsinos [25] to classify 20 music
genres in a corpus of around 500,000 documents.

Solving these two problems (large vocabulary size and variable sequence lengths)
is crucial to designing an accurate music tagging system from lyrics. Making this
work practically, and at scale, is the subject of this paper. More concretely we inves-
tigate the efficaciousness off “off-the-shelf” language models trained on O(100B) to-
kens, training our own word embeddings from scratch on a bespoke lyrics dataset, and
“warm-starting” the training. To produce a representation of an entire song, we evaluate
whether word-level features should be averaged, or processed using recurrent architec-
tures. It is out hope that this paper will serve as a practical guide for researchers hoping
to make use of lyrics in tagging tasks.

2 Methods

The core of our investigation is trialling several options of representing song lyrics
as an embedding. For this purpose we chose a transfer learning setup with distinct
document embedding and tagging stages (Figure 1). This setup has benefits beyond
our investigation: the document representation can be learned from massive amounts of
unlabelled lyrics, and can be re-used for different downstream tasks. We describe the
model components in detail below, beginning with some definitions.

2.1 Definitions

In line with the NLP literature, we will refer to the lyrics to a song as a document, and
to a collection of lyrics as a corpus. A document is made up of multiple words, usually
broken by whitespace, but it is sometimes more convenient to work with subword to-
kens so that information can be shared between words like play, played, and playing in a
model. Broader structural information within documents come in the form of sentences
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Fig. 1: We begin by processing raw lyric strings, before generating embeddings at the
word level. We then have various methods of computing document embeddings: both
supervised (sequence models with artist identification as the target) and unsupervised
(averaging and doc2vec). At the end of this process we have a single embedding per
document, which is our proposed representation. We then evaluate these embeddings
by training deep tagging classifiers on the same representation.

(groups of words separated by a period or other punctuation) or paragraphs (longer
groups of words separated by line breaks). Lyrics do not often feature well-defined sen-
tences but instead are arranged into lines and stanzas. As these are roughly analogous
to sentences/paragraphs, so we will refer to them as such in the remainder of the paper.

2.2 Word embeddings

Baseline Models We begin by defining some simple baseline models:

– random: random embeddings of dimension 128.
– bag-of-words-d: bag-of-words models with dimension d.
– tf-idf-d: TF-IDF models of dimension d.

For bag-of-words-d/tf-idf-d, we trimmed the vocabulary of the corpus by re-
moving words which appeared in at least 90% of documents, and then retained the d
most commonly occurring words. We had initially planned to reduce the dimensional-
ity of the baseline models in a more principled way through dimensionality reduction
techniques such as Principal Component Analysis, but realized that even with a sparse
implementation we could not scale these techniques to our dataset size.

Custom-trained word2vec Next, we trained word2vec models on our dataset, using
the Python package gensim1 to omit words which occurred fewer than five times in
the dataset, and trained for 5 epochs – these hyperparameters seemed sensible enough
that we did not attempt to optimize them. We did however try several embedding di-
mensions for use in downstream evaluation (see Table 2), and refer to these models as
word2vec-d for dimensionality d.

1 https://radimrehurek.com/gensim/
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Pre-trained word2vec The appeal of pretrained embeddings is that they have been
exposed to a massive amount of text – typically several orders of magnitude larger than
in-house datasets. They can therefore learn a good general-purpose understanding of
word semantics, which can then optionally be fine-tuned on a specific domain task. For
our experiments we used the google news 300 dataset, which contains 300-dimensional
vectors for around 3 million words, trained on around 100 Billion tokens [17]. Naturally
some words appeared in our data for which no pretrained embedding existed - these
were simply omitted. We refer to this model as google-300.

Warm-start word2vec We also attempted to “warm-start” the training of the em-
beddings from the model above into new embeddings google-300-warm - these
vectors retained their dimensionality and we kept the same training hyper-parameters
as word2vec-d. The vocabularies of the two models were merged, such that words
which appeared in both models took their initial state from google-300 whilst words
which were unique to word2vec-d had random initial state.

2.3 Word Embedding Summaries

For all representations above, to obtain a document-level representation we used aver-
aging (for word2vec-d) or the native summary statistic (e.g. summing word counts
in a document for bag-of-words-d).

In order to take paragraph structure and/or word order into account when computing
document embeddings, we make use of more sophisticated summarization techniques.
This section investigates various methods for achieving this.

doc2vec We begin with doc2vec [12], once again using the gensim implementation.
We refer to these models as doc2vec-d.

LSTM and Attention Next, we kept the best-performing word embeddings from Sub-
section 2.2 and experimented with two neural sequence models: Long Short Term Mem-
ory networks (lstm), and an attention network (attention). In order to learn the
sequence parameters for these models, we needed a target for the model to predict. Not
wanting to use any labels which would be later used in our evaluation framework (see
2.4), we decided to use the artist identifier as the target.

The number of unique artists in our dataset is naturally very large, so we consid-
ered using negative sampling [18] to simplify the task for the networks. However, we
noticed in prior informal experiments that good results can actually be obtained with a
large softmax layer instead. Practically speaking, we proceeded by selecting the 1, 000
most common artists in the dataset and computing their song counts. We then randomly
sampled as many songs as we could for each of these artists such that we obtained a bal-
anced dataset. The final state for lstm, or the aggregated embedding for attention,
were then connected to the target with dense layers.

We defer the discussion of results until Section 4, but note here that both these
models achieved a categorical accuracy in the artist identification proxy task of around
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0.852. In the next Subsection we describe our tagging model and the datasets used to
evaluate and compare different document embeddings.

2.4 Tagging Framework

Multi-label Our tagging model is a multi-task neural network architecture, where pre-
dictions on different tag vocabularies are treated as different tasks. The input embedding
is projected through a stack of fully connected layers until it branches to a number of
linear output layers, one per tag vocabulary. The loss function used to train the network
is obtained by summing the binary cross-entropy loss terms associated with the output
branches. Note that binary cross-entropy loss is used instead of the categorical cross-
entropy loss because multiple tags within the same vocabulary can be active for the
same document.

Multi-task We use multiple annotated datasets, defined over different set of docu-
ments: each dataset defines its own tag vocabulary and task. The multi-task formulation
makes it convenient to handle missing annotations, while still training all tasks in par-
allel. The overall loss is:

Ld =
∑
i

λiai,dLi,d, (1)

where Li,d is the loss term associated with the i-th task for document d, λi the loss
weight for the task, and ai,d ∈ [0, 1] a binary flag that represents whether document d
is present in the annotations for task i. When a track does not appear in an annotation
dataset, the loss terms associated with that dataset is set to zero.

Training During training, mean Average Precision (mAP) is computed at each epoch,
and training is stopped when mAP reaches a plateau on the validation set. Vocabulary-
wise metrics are obtained simply by averaging the values for each tag, and a final scalar
value is obtained by averaging across all tag vocabularies, weighted by the number of
tags in each vocabulary. A summary of the hyper-parameters searched for all models is
shown in Table 2.

3 Datasets

Lyrics datasets We began with an internal dataset of 17,389,303 documents with
primary language as English.3 Documents were then tokenized in gensim via the
simple preprocess function. We discovered that the distribution of number of
tokens in the documents had an extremely long tail. This was prohibitive for sequence
models, so for all document embedding experiments we truncated the number of to-
kens to 512, which reduced the maximum sequence length from 8,641 to 512 yet only
affected 4% of documents. After preprocessing, we were left with a corpus of approxi-
mately 3.8 billion tokens.

2 a random classifier would score around 0.001
3 deriving multiple language embeddings is an interesting extension of our work but beyond the

scope of this paper
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Tagging datasets We trained the tagging models on a set of internal datasets that were
either manually curated or created from metadata. The datasets contain tags from dif-
ferent domains, e.g. genre, mood, release date, and are defined over different, but over-
lapping, set of documents. A description of the datasets is provided in Table 1.

Examples per label

Dataset Example tag Tracks Tags Tags/track Min Mean Max

Flagger spoken 58,444 6 1 2,700 9,740 39,796
Era 10s 50,450 9 1 87 5,769 17,616

Moods Chill 71,271 22 1.9 100 6,092 21,995
Explicit True 48,683 2 1 16,234 24,241 32,449
Genre-1 Sufi 2,702,226 460 2.1 25 5,835 122,224
Genre-2 Piano 479,792 273 1 490 1,757 2,000
Genre-3 East Coast Rap 39,087 261 3.3 21 497 11,105
Genre-4 Worship 562,274 25 3.6 152 79,966 426,008

Table 1: Tag datasets used for evaluation. Tags/track is simply the number of tags per
track, averaged over each dataset.

Some of the tag datasets may contain multiple labels for the same track, which
makes creating balanced data splits more challenging. We used iterative splitting [21],
while also forcing tracks from the same album to appear in the same split [4]. Note that
some of the tagging datasets do overlap with the datasets used to train the document
embeddings. However the risk of overfitting here is small because the only label we use
for training our embeddings is the artist identifier (see Subsection 2.2).

4 Results

4.1 Word embeddings

We show our results for overall mAP using word embeddings in Figure 2, showing
only the best-performing model dimensionality in each group. All models outperform
the random baseline but accuracy is varied across the tasks, owing in part to the differ-
ences in vocabulary size (recall Table 1). The word2vec-512 model with averaging
achieves top performance on 6 of the 8 tasks, and is a close second on the Flagger
task.

The only task on which a pretrained model is able to compete with word2vec-512
is on the Moods dataset. In general, warm-starting the training of embeddings did not
yield improvements on our evaluation datasets.

4.2 Document embeddings

We selected word2vec-512 as our best-performing word-level embedder, and set
out to see if we could improve over simple embedding averaging – see Table 3 for our
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Hyperparameter Values

embedding dimension {27, . . . , 29}
dropout {0.1, . . . , 0.9}
learning rate {10−1, . . . , 10−5}
dense layers {20, . . . , 23}
dense size {23, . . . , 29}
lstm units {26, . . . , 29}
attention probes {22, . . . , 25}
attention mapping dimension {22, . . . , 25}

Table 2: Hyper-parameters evaluated in our experiments. Bayesian hyperparameter op-
timization [23] was used to optimize the validation mean Average Precision, with early
stopping and patience of 10 epochs. 20 trials were run concurrently and in total 100
trials were conducted for each model.

results. Here we see that only attention is able to compete with word2vec-512,
reaching similar performance on Genre-3 and superior scores on the Moods and
Explicit datasets.

Given the ability of attention to effectively label moods and explicit content,
it seems that artist identification was a suitable proxy task for training the sequence
models, or that the attention architecture is well suited for tasks related with specific
keywords, such as emotions for moods or offensive content for Explicit.

It is unclear why the powerful lstm/attention models do not yield higher
scores. One reason could be that we have sufficient data to train excellent word embed-
dings, such that further refinements are simply hard to realize. With this in mind, and
knowing that in many cases large amounts of data are difficult to come by, we were
interested to see what kind of performance could be attained from subsets of our data.

Flagger Era Moods Explicit Genre-1 Genre-2 Genre-3 Genre-4

word2vec-512 0.429 0.365 0.202 0.687 0.086 0.065 0.095 0.366
doc2vec-512 0.368 0.271 0.183 0.727 0.060 0.037 0.069 0.358

lstm 0.330 0.247 0.204 0.723 0.044 0.041 0.057 0.282
attention 0.427 0.295 0.272 0.760 0.070 0.057 0.107 0.350

Table 3: Mean average precision for each model and tagging dataset for computing
document embeddings. Best results for each dataset are in boldface.

4.3 Incremental training

We trained word2vec-512 on random subsets of our data: 0.001%, 0.01%, 0.1%,
1%, 10%, retaining the full evaluation test set in each case. Results can be seen in
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Fig. 2: Word-level embedding experiments, showing mAP on each tagging task. Docu-
ment embeddings obtained by averaging/summing embeddings across words.

Figure 3, and show that in fact over 80% of the mean average precision can be obtained
from 1% of the data (around 170,000 songs).

5 Conclusions

In this paper, we provided a comprehensive quantitative analysis of word2vec style em-
beddings for music tagging. On a range of challenging tagging tasks at the scale of
millions of songs, we discovered that it is hard to surpass the performance of relatively
simple models trained on in-house data. Small improvements to averaging embeddings
were shown to be possible through sequence modelling, although results were not con-
clusive. Experiments on sampled data show that increasing training set size beyond
O(1M) songs did not significantly improve tagging performance.

In future work, we are interested about the idea of extending our embedding frame-
work to languages beyond English, and also seeing how useful our embeddings are as
a source of side information in tasks such as music recommendation.
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Abstract. A distinguishing feature of the music repertoire of the Syrian tradi-
tion is the system of classifying melodies into eight tunes, called ’oktoec̄hos’.
It inspired many traditions, such as Greek and Indian liturgical music. In ok-
toec̄hos tradition, liturgical hymns are sung in eight modes or eight colours
(known as eight ’niram’, regionally). In this paper, the automatic oktoec̄hos genre
classification is addressed using musical texture features (MTF), i-vectors and
Mel-spectrograms through deep learning strategies. The performance of the pro-
posed approaches is evaluated using a newly created corpus of liturgical music
in Malayalam. Long-short term memory (LSTM)-based experiment reports the
average classification accuracy of 83.76%, with a significant margin over other
frameworks. The experiments demonstrate the potential of LSTM in learning
temporal information through MTF in recognizing eight modes in oktoec̄hos sys-
tem.

Keywords: liturgy, colour, timbral, deep learning.

1 Introduction

Oktoec̄hos classification in liturgical music (music using in worship) is addressed using
deep learning frameworks in the paper. Music plays a vital role in liturgy because mu-
sic itself is a language that goes beyond even cultures and races. The vast diversity of
forms, styles, and functions in the music used for worship makes it challenging to cate-
gorize liturgical music. Musical roles have been distributed in different ways in differ-
ent rites. Indian orthodox church has imbibed this music system into its liturgy through
its relationship with the orthodox church in Syria (Antiochian liturgy). A distinguish-
ing feature of the music repertoire of the Syrian tradition is the system of classifying
melodies into eight tunes [15]. This musical tradition is transferred to Indian orthodox
liturgical music through centuries with hymns in the Malayalam1. Most of the hymns
used for various feasts and occasions are musically composed under eight tunes. The
system of singing the same text in eight different melodies in an eight-week cycle is
referred to as the’oktoec̄hos’ [15].

1 https://en.wikipedia.org/wiki/Malayalam
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1.1 Oktoec̄hos

Western Syriac music is based on the classical tradition prescribed in ’Bethgazzo’2.
In oktoec̄hos tradition, liturgical hymns are sung in eight modes, similar to the Greek
liturgy. They are a group of eight adaptable melody types, known as eight ’colours’ or
’niram’ [27]. None of the Syriac melodies may cover eight notes in an octave. It may
often cover three or four or five notes. There is a similarity in Syrian/Indian liturgical
(Malankara) hymnal music and rāga3 of Indian art music. But they cannot be taken
in equal level because the rāga classification of Indian art music is incomparable in its
scientific systematisation. Each rāga has a particular mode and temperament. Oktoec̄hos
can be compared to rāga in the sense that they are also creating passion or rasa during
singing [27]. In Indian art music, a hymn in a rāga can be sung or played in another
rāga. The same principle is applied in the oktoec̄hos system that most of the liturgical
hymns can be sung in all the eight tunes.

Oktoec̄hos is considered as a cyclic system because it is performed in a cycle of
eight weeks with two colours in a week. Each colour begins with evening prayer of
Sunday. If the first colour is used in the evening, the same is continued for the rest
of the day. From Monday evening onwards the fifth colour is used. On Tuesday, it is
again switched on to the first colour and so on. The next Sunday begins with the second
colour. It is continued in the order 1-5; 2-6; 3-7; 4-8; till to the fourth Sunday and on
the fifth Sunday onwards the order becomes 5-1; 6-2; 7-3; 8-4.

1.2 Related Work

Although there has been significant work in music genre classification, the proposed
task of liturgical music genre classification is first of its kind. Melodic features [23] and
local features [28] have been employed well for genre classification task. Researchers
used both generative and discriminative models [12, 24] for music classification. Musi-
cal texture features are recently used in meter classification works [22, 21, 19]. Music
genre classification is addressed using feature fusion in [20]. A model capable of learn-
ing distinctive rhythmic structures of different music genres using unsupervised learn-
ing is proposed in [16]. In contrast with the standard approaches, model-based distances
between time series can take into account the structure of the songs by modelling the
dynamics of the parameter sequence [7]. More recent deep learning approaches process
spectrograms for the task of music genre classification [17, 3]. Regarding multimodal
approaches found in the literature, most of them combine audio and song lyrics [11]
through a fusion framework. The proposed task is similar to music genre classification,
but shares the textual content across modes is one of the specific traits of the oktoec̄hos
genre system. The aim of the work is to explore the ability of LSTM to capture the long
range dependency in learning temporal patterns.

The rest of the paper is organized as follows; Section 2 describes the proposed
system followed by the performance evaluation in Section 3. The analysis of results is
given in Section 4. Finally, the paper is concluded in Section 5.

2 Bethgazzo is a Syriac liturgical book that contains a collection of Syriac chants and melodies.
3 rāga is the fundamental melodic framework for both Carnatic and Hindusthani traditions
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2 System Description

2.1 Feature Extraction

It has already been proven that timbral and rhythmic features are useful in genre classi-
fication task [1]. In our experiment, we extracted timbral and rhythmic features as musi-
cal texture features. Timbral features, namely Mel-frequency cepstral features (MFCC)
and low-level timbral feature-set (TLF ), are computed in the front-end. Spectral cen-
troid, spectral roll-off, spectral flux, and spectral entropy [13] are extracted as low-level
timbral feature set. Besides, features namely tempo, pulse clarity, event density [10] are
computed as rhythmic cues (RF ). Event density represents the number of events per
unit time in the music piece. It is a measure that captures how easily ”listeners can per-
ceive the underlying rhythmic or metrical pulsation of music” [10]. This feature plays
an important role in musical genre recognition, in particular, allowing a finer discrimi-
nation between genres that present similar average tempo, but that differ in the degree
of emergence of the main pulsation over the rhythmic texture [10]. The distribution of
pulse clarity for the corpus is shown in Fig. 1. It can be seen that the pulse clarity dis-
tribution for niram 1, niram 2 and niram 3 is different from the rest. Low-level timbral
features and rhythmic features are computed using MIRToolbox 4.

Fig. 1: Distribution of pulse clarity for the colours

Given the success of using i-vectors for speaker and music processing tasks [29, 6],
we use the i-vector framework in the proposed task for performance comparison. The
i-vector-based statistical feature has been employed well in the task of music genre
classification [4]. In i-vector system [5], the high dimensional GMM super vector space
(generated from concatenating the mean values of GMM) is mapped to a low dimen-
sional space called total variability space. The target utterance GMM is adapted from
a universal background model (UBM) using eigenvoice adaption. The target GMM su-
per vector can be viewed as a shifted version of UBM. Formally, a target GMM super
vector M can be written as:

M = m+ Tw (1)
4 https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/
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where m represents the UBM super vector, T is a low dimensional rectangular total
variability (TV) matrix, and w is termed as i-vector. Using training data, the UBM and
TV matrix is modeled by expectation maximization. 100 dimensional i-vectors (iMFCC)
are computed for each song from MFCC using Alize tool kit [2].

In the final phase, visual representation of audio files, spectrograms are utilized
for the proposed task. Since Mel-spectrogram has already been utilized well for music
genre classification tasks [25, 8], we also experimented with mel-spectrogram-CNN
framework for the proposed task. Mel-spectrogram can be seen as the spectrogram
smoothed, with high precision in the low frequencies and low precision in the high
frequencies. Mel-spectrogram is computed with frame size of 40 ms and hop size of 10
ms using 128 bins.

2.2 Classification Scheme

We experimented with four classifiers, namely, SVM, DNN, CNN and LSTM. DNN is
based on six hidden layered network, which uses 64, 128, 256, 512, 1024, 2048 nodes
in successive layers with a dropout of 0.25. The network is trained with the batch size
is 32 for 150 epochs by AdaMax optimization algorithm. Relu and softmax have been
chosen for hidden and output layers, respectively.

Table 1: LSTM architecture used for the experiment
Sl no. Output Size Description

1 (45,64) LSTM, 64 hidden units
2 (46, 64) Dropout (0.25)
3 (1024) LSTM, 1024 hidden units
4 (1024) Dropout (0.25)
5 (8) Dense (8 hidden units)

The proposed CNN has six convolution layers, followed by max-pooling. We use
filters with a very small 3×3 receptive fields, with a fixed stride of one and increase the
number of filters for the layer by a factor of 2 after every layer. Global max-pooling is
adopted in the final max-pooling layer, which is then fed to a fully connected layer. The
training is done with 100 epochs by optimizing the categorical cross-entropy between
predictions and targets using Adam optimizer, with a learning rate of 0.001.

LSTM architecture shown in Table 1 effectively utilized to track the temporal pat-
tern embedded in the modes of the music. LSTM-RNNs can capture long-range tempo-
ral dependencies by overcoming the vanishing gradient problem in conventional RNNs
[26]. RNN tap inherent temporal pattern embedded within the frame-wise computed
MTF. Deep learning schemes and SVM are implemented using and Keras-TensorFlow
and LibSVM, respectively.
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Table 2: Overall classification accuracy for the experiments
Sl.No Feature Method Accr.(%)

1 MFCC+ TLF + RF SVM 42.65
2 MFCC + TLF + RF DNN 48.70
3 iMFCC + TLF + RF DNN 50.00
4 Mel-spectrogram CNN 52.60
5 MFCC + TLF + RF LSTM 83.76

3 Performance Evaluation

3.1 Database

A database is created in a studio environment and it consists of eight nirams (colours),
with 384 audio tracks with duration 25 to 45 sec per file. No accompaniments were there
in the audio files. A total of 15 professional singers in the age group 12 to 50, were par-
ticipated in the data recording and the whole session was recorded at 44.1kHz. All the
singers were very much familiar with the singing modes in ’oktoec̄hos’. Malayalam
hymns were collected from the liturgical book of Indian Orthodox church. The record-
ings were made niram by niram in successive sessions using a high-quality microphone,
A few audio files can be accessed at https://sites.google.com/view/audiosamples-2020/.
During experimentation, 60% files of the dataset are used for training, 10% is used for
validation and the rest for testing.

3.2 Experimental set-up

MFCCs (39 dim comprising 13 dim MFCC, its delta and delta-delta features), timbral
(TLF , 4 dim) rhythmic (RF , 3 dim) are frame-wise computed with a frame width of
40 ms and hop size of 10 ms and fused in feature-level to obtain 46-dimensional MTF.
In the i-vector experimental phase, 100-dimensional i-vectors are computed using 128
mixture GMM from MFCC using Alize tool-kit [2]. UBM model is trained using fea-
tures derived from the auxiliary database comprising audio file other than the files in
the corpus. Auxiliary database, comprising 300 audio files (duration 25-35ms) of litur-
gical music category, is prepared in a studio environment. The songs from the training
data are used for modelling the total variability matrix T by Eigen voice adaption. In
the fusion scheme, track level aggregated timbral (TLF ) and rhythmic (RF ) features
are concatenated with track-level computed i-vectors. Following the evaluation method
widely used in the MIR tasks, we computed the precision and recall and the F1 measure
as basic evaluation metrics for the performance.

4 Results and Analysis

The results are tabulated in Table 2. As per the table, the average classification accuracy
of 42.66%, 48.70%, 50.00%, 52.60% and 83.76% are reported for SVM, DNN, i-vector
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Fig. 2: Accuracy with number of layers for CNN and LSTM

framework, Mel-spectrogram-CNN and LSTM, respectively. It is worth noting that the
LSTM outperforms other approaches with a significant margin. It is reasonable to say
that time pattern capturing scheme is needed in order to recover more relevant infor-
mation from temporal embedded musical traits [7]. Experiments show that the LSTM
approach is promising for the given task, improving on the case where the dynamics are
not taken into account, and a stationary characterization of the sequences is employed.
LSTM utilized musical textural features to capture song dynamics effectively to per-
form oktoec̄hos classification. It is shown in [4] that the important music elements can
be captured by i-vectors and may potentially benefit to the classification of music sig-
nal. A possible cause of the low value of accuracy in the given experimental set-up may
potentially due to the inability to capture the rhythmic-temporal dynamics well with the
given UBM framework. Besides, aggregation of musical texture features to track-level
might have deteriorated the performance.

The performance with varying the number of layers of the network is shown in Fig.
2. For the CNN framework, the result improved, as the number of layers increased up
to six and then saturated due to overfitting. It is due to the fact that as n increases,
the model grows in-depth, and the upper layers find efficient feature representations
that are invariant to small perturbations leading to better model generalization. The
authors [14] emphasize the need for more training data in the visual representation-
based approaches for the genre classification task. It is stated that CNN needs a large
size of data to achieve better results since it is not successful enough for less data [9].
An elegant solution to this problem is data augmentation, by which deformations to
a collection of annotated training samples results in additional training data. During
LSTM approach, maximum accuracy is obtained for two layers as seen in lower-pane
in Fig. 2. The proposed experiment validates the claim that temporal information has
effectively been learned by MTF-LSTM framework. The experimental insights in [18]
show that the performance of the system depends on the temporal architecture, which
is basically designed by considering the musical domain knowledge.

The normalized confusion metrics of LSTM is plotted in Fig. 3. Class-wise classi-
fication accuracy of all nirams are greater than 70% for LSTM. Niram 5 and niram 7
report accuracy greater than 90%. Class wise accuracy can be examined from the bar
plot given in Fig. 4 from all phases. The significant improvement in class-wise accu-
racy of nirams 1, 3, 7, and 8 over CNN based framework can be seen from the plot. The
performance can potentially be improved using data augmentation and proper choice
of architecture. The performance metrics precision, recall and F1 score for all the five
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Fig. 3: Normalized Confusion Matrices for MTF-LSTM

approaches are given in Table 3. The average F1 measure of 0.43, 0.50, 0.50, 0.52, 0.84
are reported for SVM, DNN, i-vector-DNN, CNN and LSTM, respectively. The high
values of precision, recall and F1 score show the significance of LSTM for the pro-
posed task. Fig. 5 visualizes the output vectors produced by the snippets for the last
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Fig. 4: Class-wise performance for entire phases of the experiments

dense layer of the trained LSTM network using t-SNE. Note that there is good cluster-
ing (as represented with colour) and a general separation of different classes for LSTM.
It is important to note the effectiveness of LSTM in the proposed task without using any
modelling data or augmentation data as that of i-vector or CNN methodologies. Since
the results show the promise of temporal pattern learning, other frameworks have to be
experimented to investigate the potential of the proposed approach.

5 Conclusion

Oktoec̄hos classification is addressed in this paper. The performance of the proposed ap-
proaches is evaluated using a newly created corpus of Liturgical music in Malayalam.
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Fig. 5: tSNE plot from LSTM

The evaluation shows the potential of MTF-LSTM framework in Oktoec̄hos classifi-
cation with an average classification accuracy of 83.76%. Since the Greek liturgy and
Gregorian chant also share similar musical traits with Syrian tradition, the musicologi-
cal insights observed can potentially be applied to those traditions as well.
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Abstract. Music has always been an integral part of our everyday lives through
which we express feelings, emotions, and concepts. Here, we explore the asso-
ciation between music genres, demographics and moral values employing data
from an ad-hoc online survey and the Music Learning Histories Dataset. To further
characterise the music preferences of the participants the generalist/specialist
(GS) score employed. We exploit both classification and regression approaches
to assess the predictive power of music preferences for the prediction of demo-
graphic attributes as well as the moral values of the participants. Our findings point
out that moral values are hard to predict (.62 AUROCavg) solely by the music
listening behaviours, while if basic sociodemographic information is provided
the prediction score rises to 4% on average (.66 AUROCavg), with the Purity
foundation to be the one that is steadily the one with the highest accuracy scores.
Similar results are obtained from the regression analysis. Finally, we provide
with insights on the most predictive music behaviours associated with each moral
value that can inform a wide range of applications from rehabilitation practices to
communication campaign design.

1 Introduction

Music played a fundamental role in the evolution of societies being tightly related to
communication, bonding, and cultural identity development [14]. Influencing a wide
range of cognitive functions such as reasoning, problem-solving, creativity, and mental
flexibility [17], musical taste is also known to be strongly related to personality [7] and
political orientation [6]. Musical sophistication is also shown to be related to personality
traits regardless of demographics or musicianship level [10].

More recently, scientists aside from the traditional self-reported surveys [6], em-
ployed digital data and in particular online music streaming [2] and social media [20]
data to assess music preferences. Employing data from the myPersonality Facebook
project, Nave et al. [20], found that both people’s reactions to unfamiliar music samples
and “likes” for music artists predicted personality traits. Krismayer et al. [13] studied the
Last.fm platform showing that the music listening behaviours can predict demographics,
including age, gender, and nationality. More recently, Anderson et al. [2] presented
evidence about the connection between personalities and music listening preferences
studying Spotify music streaming data.
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Building on comparable interactionist theories, we set to explore the less attended
relation between moral values and music preferences. We operationalise morality ac-
cording to the Moral Foundations Theory (MFT) [9], which defines five moral traits,
namely Care/Harm, Fairness/Cheating, Loyalty/Betrayal, Authority/Subversion, and
Purity/Degradation. These can further collapse into two superior moral foundations: of
Individualising, compounded by fairness and care, that asserts that the basic constructs
of society are the individuals and hence focuses on their protection and fair treatment,
and of Binding, that summarises purity, authority and loyalty, and is based on the respect
of leadership and traditions.

Moral values are considered to be higher psychological constructs than the more
commonly investigated personality traits yet they have attracted less attention from
music scientists. In recent literature there are indications that negative emotions enforced
by types of music can worsen moral judgement [3] although that study did not rely on a
psychometrically validated theory like the MFT. Kalimeri et al. [12] demonstrated the
predictability of moral foundations from a variety of digital data including smartphone
usage and web browsing. Their results showed that moral traits and human values are
indeed complex, and thus harder to predict compared to demographics, nevertheless, they
provide a realistic dimension of the possibilities of modelling moral traits for delivering
better targeted and more effective interventions.

Here, we train classification and regression models which infer on self-reported
survey data regarding the music preferences. We thoroughly assess the rapresentativity
of our data, not only in terms of sociodemographic attributes but also from music be-
havioural patterns comparing against the open access dataset of music learning histories
dataset (MLHD). Our results show that moral values are indeed predictable from music
preference information and in line with the findings of the related literature. Further, we
discuss the most predictive music behaviours, contributing to an in-depth understanding
of the moral profiles. Such insights are fundamental to the broader picture since moral
values are a key element in the decision making process on several societal issues [11,
?]. Modelling moral values from music represents a great opportunity for improving
recommendation systems; designing online streaming applications with user well-being
in focus [18]; increasing engagement to communication campaigns for social good
applications.

2 Data Collection and Feature Engineering

Here, we employ data from a third-party survey administered online for a general scope
marketing project. The survey consists of 2,003 participants (51% females) from 12
different regions in Canada. The participants filled in, among other items, information
about basic demographic attributes, including age, gender, education, and political views.
They also completed the validated Moral Foundations questionnaire [9], while stated
their preferences on 13 music genres (on a 5-point Likert scale where 1 = strongly dislike
and 5 = strongly like). The considered music genres were: alternative pop/rock, christian,
classical, country, folk, heavy metal, rap/hip-hop, jazz, latin, pop, punk, R&B, and rock.
These genres were set from the survey creators and were not further described to the
respondents. Even so, they are commonly used to define general musical tastes among
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Table 1. Summary of the survey dataset (cleaned) with major demographic attributes utilised for
this research work.

Attributes Demographics Sample size
(N = 1062)

Age

18-24
25-34
35-44
45-54
55-64
65+

80 (7.5%)
154 (14.5%)
205 (19.3%)
205 (21.9%)
187 (17.6%)
203 (19.1%)

Gender
Male
Female

474 (44.6%)
588 (55.3%)

Education

Less than High School
High school graduate
Some College
Trade or professional school
College Graduate
Post Graduate work or degree

35 (3.2%)
195 (18.3%)
154 (14.5%)
115 (10.8%)
349 (32.8%)
205 (19.3%))

Political Party

Conservative
Liberal
NDI (New Democratic Party)
Green Party
Party Quebecois
I don’t vote

328 (30.8%)
279 (26.2%)
184 (17.3%)
66 (6.2%)
56 (5.2%)
149 (14%)

non-musician respondents. To justify these genres and observe if there is any affiliation
between survey reported preferences and digital music listening patterns, we explored
digital data of 1062 Canadian listeners extracted from the Music Learning Histories
Dataset (MLHD) [22] with a similar age and gender distribution to our survey.

Moving on to our survey data, to make sure that participants were paying attention
to the survey questions, two “catch questions” were included, which we later used to
filter the data. After excluding these users we were left with 1,062 participants (55%
females), a sample size substantially higher than previous survey-based studies [7, 6].
Table 1 summarises the demographic features of our dataset.

We then applied a factor analysis using principal axis factoring with promax rotation
to identify the major dimensions of participants’ music preferences. A 5-factor solution
was retained, which explained 67% of total data variance: {jazz, classical, latin}, {punk,
heavy metal, rap/hip-hop}, {pop, R&B}, {country, Christian, folk}, and {rock, alterna-
tive pop/rock} (genres ordered by decreasing factor loading). These factors are in line
with the ones obtained in related studies [7].

To quantify the respondents’ diversity in music preferences, we employed an adapted
version of the generalist-specialist (GS) score, inspired by the work of Anderson et al.
[1]. The projections of the 13 genres onto the five factors were considered as that genre’s
vector representation in the “preference space”. Intuitively, generalists versus specialists
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Table 2. Detailed list of the experiments we performed with the list of features employed as
predictors in each one of them.

ID Features Employed as Predictors

EX1 13 Music Genres
EX2 5 factors
EX3 GS score
EX4 13 Music Genres, Age, Gender
EX5 13 Music Genres, Age, Gender, Education
EX6 13 Music Genres, Age, Gender, Education, Political Views

will have genre vectors spread apart versus close together in the preference space. We
calculate the user centroid

−→
cti of genre vectors representing the loadings of genres on the

5 factors
−→
lj , weighted by the number of genre scores rated by each respondent wj . The

GS score is the cosine similarity between a genre vector and the preference-weighted
average of a users’ genre vectors:

GS(ui) =
1∑
wj

·
∑

wj

−→
lj · −→cti

‖
−→
lj ‖· ‖ −→

cti ‖
,

−→
cti =

1∑
wj

·
∑

wj
−→
lj

3 Experiments and Results

Exploratory Analysis. As a first step we assess the correlation between musical genres’
preferences, demographics, political views and moral traits. We observed a positive
Spearman correlation of age with Christian music, classical, country and folk music
genres (ρs = {0.18, 0.21, 0.20, 0.25}), while heavy metal, hip-hop/rap and punk
were more preferred by younger ages, whereas older people expressed their dislike
towards these genres (ρs = {-0.22, −0.38, −0.38 }). Education was positively related
with classical music, jazz and latin music (ρs = {0.22, 0.13, 0.13}), indicating that
people with higher education preferred these genres. Loyalty, authority and purity were
positively correlated with Christian music (ρs = {0.18, 26, 38}) and country music
(ρs = {0.17, 20, 21}). Looking at the political views of the respondents, conservatives
were positively correlated with Christian genre and country (ρs = {0.12, 0.12}) and
negatively correlated to hip-hop/rap and punk (ρs = {-0.17, −0.15}).

Further, we assessed whether the obtained self-reported responses of the question-
naire are in line with digital music listening data. From the MLHD dataset [22] we
extracted artists’ genres using MusicBrainz identifiers. From the survey data we dis-
cerned that the top 10 most preferred genres were: rock, pop, alternative pop-rock,
classical, r&b, country, jazz, folk, latin, and hip-hop/rap. Similar trends were encoun-
tered in the music listening histories of Canadian users in MLHD where the 10 most
frequently listened genres were: rock, alternative rock, pop-rock, pop, electronic, folk,
punk, jazz, heavy metal, and hip-hop.

Moral Values Classification. Our main research question is whether we can predict
peoples’ moral values from their music preferences. To answer this question, we postulate
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Table 3. Moral traits classification with XGBoost, average weighted AUROC and standard devia-
tion over 5-fold cross-validation (baseline is .50).

EX1 EX2 EX3

Care .57 (3.7) .54 (2.1) .52 (1.5)
Fairness .56 (2.9) .52 (1.1) .48 (2.7)
Authority .63 (0.8) .60 (1.1) .49 (1.7)
Purity .69 (2.8) .65 (3.0) .57 (2.3)
Loyalty .61 (2.4) .56 (1.9) .48 (3.1)
Individ. .55 (3.5) .51 (0.8) .50 (1.6)
Binding .67 (2.4) .63 (2.2) .52 (1.9)

Table 4. Moral traits classification with XGBoost for different predictors (see Table 2 where
they are defined). Models evaluated based on AUROC and standard deviation over 5-fold cross-
validation (baseline is 50).

EX1 EX4 EX5 EX6

Care .57 (3.7) .62 (3.2) .62 (3.0) .63 (2.3)
Fairness .56 (2.9) .58 (2.5) .57 (2.3) .62 (4.3)
Authority .63 (0.8) .64 (1.6) .65 (2.0) .66 (1.6)
Purity .69 (2.8) .71 (3.0) .71 (1.4) .71 (1.6)
Loyalty .61 (2.4) .67 (3.5) .66 (2.2) .66 (2.9)
Individ. .55 (3.5) .59 (2.4) .59 (3.3) .61 (1.8)
Binding .67 (2.4) .71 (3.2) .70 (2.2) .72 (2.9)

the task as a supervised classification one, developing a series of experiments to assess
the predictive power of different variables (see Table 2). We assign the class label “high”
to individuals with moral scores higher than the population median for the specific
foundation, and “low”, otherwise. We perform 5-fold cross-validation on shuffled data
(to avoid dependencies in successive data points), with 70% of training and 30% testing
data. We opt for the gradient boosting algorithm XGBoost (XGB) as it performed better
than Random Forest (RF) and Support Vector Machine (SVM) in this task.

To take into account the effect of unbalanced class labels in the performance met-
ric, we evaluate our models with the area under the receiver operating characteristic
(AUROC) metric which is a performance measure for binary classifiers that employs
a discrimination threshold to differentiate between a high and a low class [12]. The
best model is then chosen as the one that maximized the weighted area under receiver
operating characteristic (AUROC) statistic.

Initially, we compared the predictive power of the genre information against the
features engineered by us (EX1, EX2, and EX3). We trained one model per moral
foundation, and we present the cross validated results in Table 3. We notice that the
information obtained directly about the music preferences (EX1) outperforms the features
we developed. When comparing the scenarios, we observe that the 5 factors, and the GS
score accounting only for part of the variance in the data, did not manage to outperform
the explicit information on music preferences. A question that emerges naturally, is
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Fig. 1. Feature contributions (via SHAP values). The higher the SHAP value, the more the
feature contributes to the moral prediction.

.

whether including knowledge regarding the participants’ basic demographic features
(i.e. age, political views, education level) will improve the prediction of their moral
values. Table 4 summarises the results when age, gender, education and political views
are incorporated in the design. As expected, the more information we have about the
participants the more precise our predictions become, however, the improvement is
minimum. This shows us the importance of music behaviours alone in explaining the
variability of our moral values.

Further, we employed SHAP (SHapley Additive exPlanations), a game theory ap-
proach developed to explain the contribution of each feature to the final output of any
machine learning model [15]. SHAP values provide both global and local interpretability,
meaning that we can assess both how much each predictor and each observation, respec-
tively, contribute to the performance of the classifier. SHAP’s output helps to understand
the general behaviour of our model by assessing the impact of each input feature in the
final decision, thus enhancing the usefulness of our framework (Figure 1).
Moral Values Regression. Data binning is a common way to aggregate information and
facilitate the classification tasks. However, there are known issues to dichotomisation
of variables which often lead to misleading results [16]. Here, to ensure that the most
predictive features as emerged from the classification process are indeed descriptive of
the respective moral trait, we conducted a regression analysis. At this point, the aim is to
understand whether we can estimate the original moral scores (predicting the quantity)
based on our explanatory variables in disposition (i.e., music genres ad demographics).

To do so, we trained an XGBoost Regressor for each moral foundation. We main-
tained the same experimental designs and settings as in the classification task. For
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Table 5. Mean Absolute Error (MAE) and standard deviation over 5-fold cross-validation for
XGBoost regression on music preference features (see Table 2).

EX1 EX2 EX3

Care 3.86 (13.2) 3.72 (10.9) 3.89 (7.0)
Fairness 3.27 (11.1) 3.28 (9.6) 3.55 (8.7)
Authority 4.19 (23.3) 4.20 (16.7) 4.47 (13.9)
Purity 4.86 (19.7) 4.99 (25.0) 5.35 (21.0)
Loyalty 4.46 (12.1) 4.33 (19.4) 4.64 (11.6)

Individ. 3.23 (9.5) 3.17 (8.5) 3.35 (9.9)
Binding 3.86 (15.1) 3.79 (6.3) 4.22 (18.5)

Table 6. Mean Absolute Error (MAE) and standard deviation over 5-fold cross-validation for
XGBoost regression on music preference and demographic features (see Table 2).

EX1 EX4 EX5 EX6

Care 3.86 (13.2) 3.72 (6.2) 3.71 (9.3) 3.60 (8.0)
Fairness 3.27 (11.1) 3.25 (8.2) 3.19 (10.5) 3.12 (13.4)
Authority 4.19 (23.3) 4.14 (15.9) 4.10 (9.3) 4.09 (11.0)
Purity 4.86 (19.7) 4.86 (20.4) 4.74 (18.9) 4.71 (15.8)
Loyalty 4.46 (12.1) 4.19 (22.8) 4.20 (18.7) 4.21 (18.7)

Individ. 3.23 (9.5) 3.17 (14.4) 3.17 (8.0) 3.0 (8.9)
Binding 3.86 (15.1) 3.80 (11.0) 3.76 (13.1) 3.74 (5.4)

evaluation, we used Mean Absolute Error (MAE). These options allow for a direct
comparison of the most predictive features with the ones emerged from the classification
task (Table 5). We noticed that as in the classification task, when adding information to
the models the MAE decreases indicating that the model fits the data better. Also in this
case the gain of adding more information is relatively small with respect to the music
genres alone.

We visualised the most predictive features using again the Shap values (see Figure 2).
Interestingly, the christian music genre appears again as the most important predictor for
both the Binding and Individualising traits. The feature importance for the output of the
XGboost regressor, is in line with the feature significance obtained with the classification
approach. The same holds for all the moral foundations which are not depicted here for
spacing issues.

4 Discussions and Conclusions

Henry Wadsworth Longfellow wrote, “Music is the universal language of mankind.”
Contemporary research has found converging evidence that people listen to music that
reflects their psychological traits and needs and help express emotions, cultures, values
and personalities. In this paper, we analysed the less explored links between musical
preferences, demographics (age, gender, political views, and education level) and Moral
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Fig. 2. Features with the most impact on the XGBoost regression model output.

Foundations (MFT [9]). We applied both classification and regression models for moral
traits prediction. From classification results, it was inferred that MFT Binding was best
predicted with AUROC score 72%, whereas MFT individualising showed weaker results
with AUROC score 61%. While, for the regression task the lowest MAE was 3.0 for
the Individualising and 3.74 for Social Binding. In both approaches, the most impactful
features on inferring morality were christian music and age.

Moral foundations are strongly tied to political views; despite that, the musical fea-
tures are more predictive than political leanings. Social binding is related to conservative
political views [8] - and in fact is predicted by christian, and country music. We notice
that people naturally express their moral values through the music they listen to. We
instinctively categorize objects, symbols, but also people, creating a notion of social
identity. According to the social identity theory members of a group will seek to find
negative aspects to other groups thus enhancing their self-image [21]. Such reasoning
reflects on a broad range of attitudes related to stereotype formations [19] but also as
we notice here to musical preferences. For instance, people higher in social binding
foundations tend to listen to country music which often expresses notions of patriotism.
Christian music is also a predictor of this superior foundation, which again fosters the
notion of belonging to a group. Across all experiments, Christian music emerged as the
most predictive genre. On the other hand, genres such as punk, and hip hop are known
to challenge the traditional values and the status quo, hence are preferred by people who
strongly value these aspects. Our findings suggest that musical preferences are quite
informative of deeper psychological attributes; still there is space for improvement. For
instance, we noticed that the care, fairness, and loyalty foundations are harder to predict.
To this end we aim to explore musical content analysis, for instance, incorporating
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linguistic cues, and the moral valence scores as proposed by Araque et al. [4, 5] on lyrics
to further improve the performance.

In future work we aim to delve deeper into the relation between music and morality,
and between music and other universal human values, by using passively collected digital
traits of music listening behaviours outside a laboratory setting and over a period of time
[2], while using self-reported surveys as a solid groundtruth. We will further investigate
the association between music listening preferences other psychological aspects such
as human values and emotions. Developing data-informed models will help unlock the
potential of personalised, uniquely tailored digital music experiences and communication
strategies [12, 1]. Predicting the moral values from listening behaviours can provide
noninvasive insights on the values or other psychological aspects of populations at a
large scale.
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10. Greenberg, D.M., Müllensiefen, D., Lamb, M.E., Rentfrow, P.J.: Personality predicts musical
sophistication. J. Res. Pers. 58, 154–158 (2015)

11. Haidt, J., Joseph, C.: Intuitive ethics: How innately prepared intuitions generate culturally
variable virtues. Daedalus 133(4), 55–66 (2004)



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

76

12. Kalimeri, K., Beiró, M.G., Delfino, M., Raleigh, R., Cattuto, C.: Predicting demographics,
moral foundations, and human values from digital behaviours. Comput. Hum. Behav. 92,
428–445 (2019)

13. Krismayer, T., Schedl, M., Knees, P., Rabiser, R.: Predicting user demographics from music
listening information. Multimed. Tools. Appl. 78(3), 2897–2920 (2019)

14. Loersch, C., Arbuckle, N.L.: Unraveling the mystery of music: Music as an evolved group
process. J. Personal. Soc. Psychol. 105(5), 777–798 (2013)

15. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proc. 31st
Int. Conf. Neural. Inf. Process. Syst. pp. 4768–4777 (2017)

16. MacCallum, R.C., Zhang, S., Preacher, K.J., Rucker, D.D.: On the practice of dichotomization
of quantitative variables. Psychol. Methods 7(1), 19–40 (2002)

17. MacDonald, R., Kreutz, G., Mitchell, L.: Music, health, and wellbeing. Oxford University
Press (2013)

18. Mejova, Y., Kalimeri, K.: Effect of values and technology use on exercise: implications
for personalized behavior change interventions. In: Proc. ACM Conf. User Model. Adapt.
Personaliz. (UMAP) 2019. pp. 36–45 (2019)

19. Miller, S.L., Maner, J.K., Becker, D.V.: Self-protective biases in group categorization: Threat
cues shape the psychological boundary between “us” and “them”. J. Personal. Soc. Psychol.
99(1), 62–77 (2010)

20. Nave, G., Minxha, J., Greenberg, D.M., Kosinski, M., Stillwell, D., Rentfrow, J.: Musical
preferences predict personality: evidence from active listening and facebook likes. Psychol.
Sci. 29(7), 1145–1158 (2018)

21. Tajfel, H., Turner, J.C., Austin, W.G., Worchel, S.: An integrative theory of intergroup conflict.
Org. Id.: A reader 56(65), 33–47 (1979)

22. Vigliensoni, G., Fujinaga, I.: The music listening histories dataset. In: Proc. Int. Soc. Music
Inf. Retr. Conf. (ISMIR). pp. 96–102 (2017)



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

77

Classification of 1950 to 1960 Electronic Music Using the 
VGGish Neural Network and Random Forest 

Maurício do V. M. da Costa1, Florian Zwißler1, Philip Schwarzbauer1 and Michael 
Oehler1 

1 Music Technology & Digital Musicology Lab (MTDML), Institute for Musicology and Music 
Pedagogy, Osnabrück University, Germany 

michael.oehler@uos.de 

Abstract. This paper presents an approach to extend an ontological database 
concept aimed at the systematization of Electronic Music. Machine Learning 
techniques are used to test the significance of empirical investigations on the 
“output layer” of the production process, namely finished compositions of 
Electronic Music. As an example, pieces from the era of 1950 to 1960 are being 
examined, representing the aesthetics of Musique Concrète from Paris and 
Elektronische Musik from Cologne. The experiments performed using state-of-
the-art techniques suggest the confirmation of measurable differences in the 
musical pieces from different studios for electronic music that were motivated by 
aesthetically divergent approaches. 

 

Keywords: electronic music, musique concrète, Elektronische Musik, VGGish, random 
forest 

1 Introduction 

1.1 Analysis and systematization of Electronic Music 

Despite Electronic Music having existed for many decades, it is still lacking tools to 
reliably systematize it, the most striking being a shortage of a clear terminology capable 
of describing the phenomena themselves as well as the processes used to produce them. 
In most cases, analogies to the strong and established terminologies of instrumental 
music and sound production [1-5] are being taken as a solution to this problem, not 
facing the problem that electronic sound production implies a fundamentally different 
potential that needs to be addressed [6]. This issue is continued in the field of music 
analysis: only a few attempts have been made to present universally valid tools that 
allow musicologists to get significant insights into the structure of a piece of Electronic 
Music. The most valuable source of information at hand is represented by [7, 8]  and 
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the recently revised EMDoku1, a huge database of Electronic Music that gives insights 
into all the results of composing with electronically produced sound. A systematization 
that comprises the conditions of the production of these results is yet to be found. 
Recently, this topic has received more attention, for example, with regard to Musique 
Concrète [9]. 

The PRESET research project, which was presented at CMMR 2019, has set out to 
do basic work to make progress in this direction: a database is being put together 
collating information from an in-depth survey of several studios for Electronic Music. 
Exploring their informational resources and bringing them together will open new lines 
of insight into the nature and relations of the processes involved. To address this issue, 
it was decided to use a semantic web database with an underlying ontology as a 
structural and terminological foundation [10]. In connection with the methods of actor-
network theory [11] and theories from the field of information systems [12, 13], the 
working processes within the single studios as well as the connection in between them 
will display a new perspective on the field. 

 
1.2 Electronic Music in the 1950s: Musique Concrète and Elektronische Musik 

The early period of electronic music was characterized by a vivid debate between two 
quite different approaches of composing music within the context of an electronic 
studio. The Musique Concrète, which originated from Paris with its founder Pierre 
Schaeffer and since 1958 organised in the Groupe de Recherches Musicales (GRM), 
and the approach called Elektronische Musik (electronic music), which was pursued at 
the West German Radio in Cologne, most prominently represented by its then leader 
Herbert Eimert and Karlheinz Stockhausen. The Musique Concrète originally set out 
their experiments from recorded sound, thus integrating the production medium 
(records and, later on, magnetic tape) within the very first steps of working on sound. 
The repertoire of sound to create a piece was gained by very simple means of 
manipulation such as cutting the tape, reversing it, changing its speed, and building 
loops to generate rhythmic structures. This results in an empirical approach on dealing 
with sound as a medium to work on, also leading to an elaborate theoretical concept of 
the nature of sounds that Schaeffer formulated in his Traité des objets musicaux [14]. 
In Cologne, on the other hand, the idea was rather to construct the sound following a 
pre-structured concept devised by the composer. This strategy, in turn, was strongly 
connected to the concept of serial music, which favored a view on composition as a 
formal organization of sets of parameters [15]. It is evident that this view found a 
perfect fit in the new possibilities of sound creation and organization in an electronic 
studio. 

These two approaches, of course, did not exist separately from one another, and there 
was a vital interest in each other’s musical results. The opposing views on concepts of 
composition have been broadly discussed [16-18] and have led to the view that there 
was a remarkable aesthetic difference in these approaches. 

Apart from the discussion to what extent this holds true, we decided to take the 
diverging concepts to an empirical test with the use of Machine Learning techniques. 

 
1 www.emdoku.de 
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2 Method 

The methods presented in Section 1.1 basically represent a top-down model of 
systematization. Connecting our efforts to the existing potentials of databases such as 
EMDoku, we decided to add a bottom-up method of information retrieval in analyzing 
datasets representing the actual “output” of the studios in Cologne and Paris within a 
time window ranging from 1950 to 1960 – a period where the aesthetically divergent 
approaches were most prominent [18]. In doing so, we will try to test methods of 
empirical analysis and check them for their significance 

The experiment consists in using a pre-trained Deep Neural Network (DNN) to 
convert the audio samples into semantically meaningful embeddings and then training 
a classifier to learn to identify material from both classes (GRM and WDR) using such 
high-level embeddings as input features. This way, we propose to empirically assess 
the existence of differences between recordings of such groups in purely acoustic 
features. Although this approach does not indicate what those differences are, we intend 
to pursue an indirect demonstration of their existence, for the only information provided 
for classification is related to audio content. 

The VGGish [19] model was used for the computation of the embeddings. This 
network is based on the VGG [20] model, which is one of the most used DNN 
architectures for image recognition, and produces embeddings of 128 samples. In order 
to prepare the audio data to be processed by this network, first, the audio input signal 
is collapsed to mono and band-limited to 8 kHz. Then, its spectrogram is computed 
using the short-time Fourier transform, with a Hann analysis window of 25 ms and a 
hop of 10 ms. After that, a mel-spectrogram with 64 frequency bands (125 - 7500 Hz) 
is obtained by remapping the spectrogram time-frequency bins. This mel-spectrogram 
is then framed into non-overlapping examples of 0.985 s, each example covering the 
64 mel bands and 96 time frames of 10 ms each. Finally, this process produces the 
embeddings for all audio files available by computing the network's outputs and stores 
them in text files with the same names as their audio counterparts. 

Then, the random forest algorithm was used to classify the embeddings produced. 
To avoid having excerpts of the same musical piece both in the training and test sets by 
treating the embeddings as independent samples, all the embeddings of each piece were 
either assigned to the training set or to the test set. For this purpose, a random selection 
of the pieces was performed with a probability of 70% of each piece being selected as 
training data and 30% as test data. Since their variability in length is large (ranging 
from less than a minute to several minutes), considerable differences occur in the actual 
train/test proportion. This same classification experiment was repeated 10 times and 
both the average and the standard deviation of the results were computed to illustrate 
the classification performance. We used the implementation present in the “Scikit 
learn”2 framework for the random forest algorithm, set to train an ensemble of 400 
decision trees and using its default settings. Smaller number of trees were tested and 
provided slightly lower performance. Nevertheless, yielding high classification 
performance and providing a detailed analysis regarding the classification problem 
itself are not the objective of this paper. 

 
2 scikit-learn.org 
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In order to assess the performance, the majority vote of the embeddings within each 
musical piece was taken to assign the piece's classification. This way, each piece 
accounted for one sample, instead of their group of embeddings, i.e. pieces from which 
more than 50% of the embeddings were correctly estimated are considered to be one 
correctly estimated sample, despite its duration. 

The actual lists of pieces used for the analysis were determined through the 
following: as a first step, all output from both studios within the chosen time interval 
was identified following the data resources provided by EMDoku, which represents the 
most reliable resource available. After that, only works that purely consist of 
electronically produced sounds were selected, thereby excluding all pieces that use 
sound resources from outside the production processes in discussion. It was also 
decided to exclude all sorts of functional compositions (e.g. music for radio plays) 
within those lists to again ensure the validity of the data as examples of the two aesthetic 
directions. The next step was to retrieve the actual audio material of the pieces. From 
the list of pieces from the studio of the WDR, it was possible to obtain about 75% of 
the pieces in question (57 files), making up a total duration of 3.5h. The examples 
available from the GRM made up a fairly larger amount, with 94 files, totaling roughly 
6h of audio material. 

It should be noted that we only compared the audio content of these pieces with no 
regard to spatialization, so from all the pieces, also those that exist in multichannel 
versions, only mono-mixdown versions were used, due to the characteristics of the 
architecture adopted for the classification task. 

3 Results 

The results obtained from this procedure are summarized in Table 1, which shows the 
average and standard deviation for accuracy, precision, recall and F-measure. Despite 
the small dataset available, the results suggest that the classifier was capable of 
identifying differences in the acoustic features related to each aesthetic approach. 

Table 1. Overall results. 

Measure Average Std. 
Accuracy 0.82 0.08 
Precision 0.89 0.08 

Recall 0.66 0.20 
F-measure 0.74 0.14 

A histogram that represents classification accuracy of the embeddings within each 
musical piece, i.e. the proportion of correct votes for each class within each piece, is 
illustrated in Figure 1. As can be observed, the distributions obtained have different 
characteristics: the classifier was more successful in identifying excerpts from GRM, 
with voting proportion more concentrated towards 100% than from WDR, which had 
more diluted classification of the embeddings. In total, the GRM pieces were classified 
as 82% GRM and 18% WDR, whereas the WDR pieces were estimated to be 47% 
WDR and 53% GRM. 
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Fig. 1: Histogram of classification accuracy within each musical piece. 
 
The distributions obtained suggest that the classes may have a significant overlap, 

as expected, but the classification system tended to have a bias towards the GRM class 
despite all data imbalancement compensation techniques. This may indicate that the 
GRM pieces might have less variation within the acoustic features of interest for the 
classification system, whereas the WDR pieces may show a wider variety in such 
dimensions. Besides, the pieces have a considerable amount of excerpts where the audio 
material present may severely interfere in this analysis, like background noise or long 
reverb tails. Nevertheless, the results are informative and serve the purpose of 
empirically assessing the differences present in sound. 

4 Conclusion 

The experiments presented in this paper served the initial goal to widen the focus of a 
database still under construction that aims at facilitating a valid and significant 
systematization of Electronic Music. The Machine Learning techniques employed to 
analyze the two specific sets of compositional results of studio work have displayed a 
specific difference within these sets. A possible consequence of this outcome in 
interaction with a future ontological database could be to check the technical equipment 
used within the specific time interval for correspondences and differences, as well as to 
investigate possible interdependencies of personnel involved. The inclusion of this 
“bottom up”- method is therefore likely to provide valuable insights and to bring up 
crucial questions to constantly improve the structure of the database as a whole. 

The experimental setup was comprised of two different Machine Learning 
techniques: a pre-trained deep neural network (VGGish), which uses as input mel-
spectrograms of the audio signal and outputs a sequence of high-level embeddings, 
followed by a random forest classifier, which was trained to differentiate embeddings 
from both classes under analysis. The musical pieces were then classified using the 
criterion of majority vote of the classes estimated for their embeddings. The train and 
test sets were randomly generated from piece selection and the experiment was 
performed 10 times. No embeddings from the same musical piece were used for both 
training and testing. 
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Although the results are not particularly outstanding for a music genre classification 
task (see Table 1), they do show that there are indeed noticeable differences in the 
acoustic features extracted from the pieces in these groups. This provides empirical 
evidence for what was only discussed theoretically in earlier studies. 

It is worth mentioning that the VGGish network does not encompass long-term 
temporal interdependencies of acoustic events, which are a fundamental part of music 
structure and may reveal hidden patterns that could improve this intricate classification 
task. For this purpose, we intend to expand this experiment in future work tackling this 
specific problem by considering the whole sequence of embeddings using a different 
downstream model, instead of purely classifying each one independently, or even using 
a deep neural network that takes into account the temporal dimension. 
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Abstract. A frequent problem when dealing with audio classification tasks is
the scarcity of suitable training data. This work investigates ways of mitigating
this problem by applying transfer learning techniques to neural network architec-
tures for several classification tasks from the field of Music Information Retrieval
(MIR). First, three state-of-the-art architectures are trained and evaluated with
several datasets for the task of speech/music classification. Second, feature repre-
sentations or embeddings are extracted from the trained networks to classify new
tasks with unseen data. The effect of pre-training with respect to the similarity of
the source and target tasks are investigated in the context of transfer learning, as
well as different fine-tuning strategies.

Keywords: Deep Learning, Neural Networks, Audio Classification, Speech Mu-
sic Classification, Transfer Learning, Embeddings, Music Information Retrieval

1 Introduction

Detection of speech and music in audio signals has been investigated in the field of
Music Information Retrieval (MIR) to automatically enrich audio archives with meta-
data. In addition to binary classification where only one of the classes is assumed to
be present at time more complex tasks like segmentation of speech or music as well
as multi-label classification where multiple classes can be present at time gained pop-
ularity. Despite the vast amount of research in this field [23, 12, 14, 24, 13, 5, 20, 4, 8],
speech/music classification (SMC) remains challenging in the presence of noise, the
involvement of chanting, or under low-quality recording conditions [15]. SMC was first
addressed with algorithms based on audio features (e.g., pitch, zero crossing rate) [23,
14, 12]. Recent approaches almost entirely focus on deep neural networks (DNN) that
directly learn to detect desired audio properties from input signals and its correspond-
ing annotations [13, 2, 5, 20]. In an attempt to make audio classifiers more robust to
varying signal conditions and data scarcity, pre-trained feature representations (embed-
dings) from related tasks are tranferred to new tasks, so called Transfer Learning (TL),
to avoid exhaustive training from scratch [3, 6, 8, 9, 2].
� This work has been supported by the German Research Foundation (BR 1333/20-1,

CA 2096/1-1)
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This work is divided in two stages. First, we analyze three state-of-the-art neural net-
work architectures for SMC and evaluate their robustness to varying signal conditions
by using a diversity of datasets. Here we aim to understand whether any of the three
architectures is more robust to varying signal characteristics when trained under com-
parable conditions. In the second stage of our work, audio embeddings are computed
from the three pre-trained architectures. These embeddings are then transferred to dif-
ferent MIR tasks. In this stage, we aim to understand how pre-trained models compare
to baseline networks trained from scratch, and whether a close relation of a downstream
task and pre-training task exhibit higher learning effects than general audio embeddings
like OpenL3 [3] that were not trained on a related MIR task at all.

2 Related Work

Current approaches for SMC mostly rely on deep neural networks (DNN) trained and
optimized using raw audio data or its time-frequency transform. The most popular net-
works for this task are convolutional neural networks (CNN) [12, 13, 5, 20]. In 2015
Lidy et. al [13] used a CNN approach consisting of one convolutional layer followed
by a fully connected layer achieving 99.7% accuracy on binary classification of speech
and music at the MIREX competition [18]. The separate detection of both classes still
achieved 88.5% accuracy. The model proposed by Marolt [15] obtained an accuracy of
98% for SMC, and 92% for a 4-class classification for speech, solo singing, choir, and
instrumental music. The model uses a combination of convolutional layers followed
by residual layers. Besides the GTZAN [25] and MUSAN [24] datasets, additional field
recordings and traditional music from various libraries were included. In [4], differ-
ent architectures including DNNs, CNNs and recurrent neural networks were evaluated
for speech music detection. According to their findings, a model with six CNN lay-
ers performed best on AudioSet [21] with 86% accuracy for speech or music detection.
SwishNet [8] uses a set of one-dimensional convolutions with multiple skip connections
on Mel-Frequency Cepstral Coefficients (MFCCs). This model achieved 93% accuracy
on a 3-class detection task with speech, music, and noise and 99% accuracy for speech
detection using the MUSAN [24] dataset for training and GTZAN [25] for verification.
For performance comparison Hussain et al. used a Gaussian Mixture Model, a fully
connected neural network (FCN), and a transfer learning approach of the MobileNet ar-
chitecture [7] was used. The MobileNet embeddings worked best throughout the paper
followed by the proposed SwishNet architecture.

Choi et al. [2] showed that transfer learning can outperform traditional feature based
methods in many different MIR tasks as well as audio event detection (AED). In [3]
OpenL3 embeddings were trained on the task of audio-video correspondence in a self-
supervised manner inspired by [1] and subsequently transferred to the task of environ-
mental sound classification. On several AED datasets this approach outperformed other
TL embeddings based on VGG-like and SoundNet architectures. Grollmisch et al. [6]
verified the potential of OpenL3 for different MIR and industrial sound analysis tasks.
The embeddings consistently resulted in good classification performance while other
embeddings highly varied depending on the task. Kong et al. [11] proposed pre-trained
audio neural networks (PANN) for transfer learning. The authors introduce an input rep-
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resentation called Wavegram, a neural network based time-frequency-transformation.
A multi-layer CNN is connected to this input network and trained for audio tagging
on the AudioSet [21]. Subsequently, these embeddings were augmented by trainable
classifiers and applied to six different classification tasks including genre and acoustic
scenes classification, among others. In most of these tasks, the embeddings performed
better or similar to state-of-the-art approaches. The authors compared multiple networks
and depths as well as different positions for unfreezing of the pre-trained embeddings
concluding that a complete fine-tuning of all network parameters results in the highest
accuracy. To overcome the overfitting to one particular task Kim et al. [9] proposed
multi-task learning. During training, a CNN network structure is split at one stage in
the model into multiple branches, one for each task. All branches consist of the same
network architecture and where trained simultaneously. The last layers before the clas-
sifiers of each branch are concatenated and used as combined embeddings. Initially the
system was trained on the Million Song Database [16] for tempo estimation and song
similarity. The embeddings were evaluated on target tasks like genre classification or
music recommendation. Different branch positions in the network were evaluated con-
cluding that earlier branching results in better performance for the target tasks but also
in bigger networks with more computational costs.

3 Datasets

To get a better understanding of the performance of the evaluated architectures, four
datasets were used during training as depicted in table 1. The MUSAN dataset [24] and
the GTZAN dataset [25] consist of clearly distinguishable broadcast material of west-
ern music and speech. In addition, two more challenging ethnomusicology datasets are
included. The Marolt19 dataset was first introduced in [15]. Apart from the speech
class, choir, solo singing and instrumental music are combined into the ’music’ class for
training. Marolt19 includes material from archives such as the British Library world
& traditional music collection, the French Centre of Scientific Research (CNRS), or the
Slovenian sound archive Ethnomuse. The ACMus Youtube Dataset (ACMusYT)4

was collected as part of the ACMus research project. 5 It consists of audio excerpts of

4 https://zenodo.org/record/4870820
5 ACMus project page: https://acmus-mir.github.io/

Table 1. Characteristics of the datasets used for training on speech/music classification (source
task) and for transfer learning tasks (target tasks).

Application Dataset ID Classes [Number of Files per class] Sample Rate Bit Depth Duration [min]

Training

MUSAN Music [660], Speech [426], Noise [764] 16 kHz 16 6483
GTZAN Music [64], Speech [64] 22 kHz 16 64

Marolt19 Solo Singing [1512], Choir [1618], 44 kHz 16 577Instrumental [2960], Speech [1284]
ACMusYT Speech [40], Music [35], A Cappella [40] 48 kHz 16 88

Transfer
S&S Music [101], Speech [80] 22 kHz 16 45
ACMusVF Male [46], Female [24] 96 kHz 24 26
ACMusIF 1 [43], 2 [42], 3 [43], 4 [21], 5+ [36] 96 kHz 24 65
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traditional Colombian music from the Andes region. The subset used in this work con-
sists of two classes: speech and music with vocals. The ’vocal-only’ class is not used
in these experiments for better separation during training. For TL experiments, the pre-
trained networks are subsequently fine-tuned with separate datasets. An established set
for speech music tasks is the Slaney & Scheirer dataset (S&S) [23] with content taken
from broadcast material. All 64 files of noise and mixed (speech/music) content are ex-
cluded before the evaluation. From the ACMus-MIR dataset [17], the Instrumental
Format Set (ACMusIF) was used. This set was created from traditional Andean
music recordings for the purpose of ensemble size classification. The goal of this task
is to classify music tracks as solo, duo, trio, quartet, and larger ensembles. Finally, the
ACMus Vocal Format Set (ACMusVF) is included.6 It comprises Andean vo-
cal music (male and female singers) partly with accompaniment.

4 Methodology

4.1 Network Architectures

The INA (Institut National de l’Audiovisuel) approach [5] is a CNN-based network that
uses 68 frames of 21 MFCCs with a maximum frequency of 4 kHz as input representa-
tion to four 2D-convolutional layers followed by four dense layers with dropout. Each
of these layers are followed by batch normalization and a ReLU activation. The output
layer uses Softmax activation (see Figure 1 for details). INA achieved an average ac-
curacy of 92.6% at the 2018 MIREX [19] competition on music detection and 96.2%
on speech detection.

SwishNet is an architecture based on one-dimensional convolutional layers in com-
bination with residual and skip connections [8] (see Figure 2). As input, 16 frames of
22 MFCCs are extracted from one second audio snippets and used as 2D feature rep-
resentation. Classification results range from 93% frame-wise accuracy for 3 classes
(speech, music, noise) to 99% segment-wise accuracy for speech detection.

VGG-like architectures are commonly used networks in many fields of deep learn-
ing [15, 3, 2]. The network illustrated in Figure 3 is inspired by [22]. Logarithmic Mel-
Spectrogram (MelSpec) is used as input from audio sampled at 22050 Hz. Frames of
2048 samples with 512 samples hop size are transformed to 128 mel band representa-
tion. A patch of 10 frames is fed to four convolutional layers with 32 kernels of size 3x3.

6 https://zenodo.org/record/4791394

Fig. 1. INA network architecture [5]. The green line indicates the freezing point of the intermedi-
ate fine-tuning strategy. The red line indicates the output point of the embedding vector.
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Fig. 2. SwishNet network architecture. The green line indicates the freezing point of the interme-
diate fine-tuning strategy. The red line indicates the output point of the embedding vector. Refer
to [8] for more details on the architecture.

Each layer is followed by batch normalization and ReLU activation. After every second
convolutional layer, MaxPooling is applied with a 3x3 window. Two fully connected
layers are added after flattening followed by the classifier with a Softmax activation.

OpenL3 embeddings are included as a state-of-the-art baseline. The 512 unit feature
vectors are extracted from the audio data with default parameters from [3]. These vec-
tors are normalized between 0 and 1 and used as input for a trainable neural classifier
consisting of a 128 unit dense layer followed by the final classifier with Sigmoid acti-
vation. As a second baseline, a simple DNN architecture is used. MelSpecs with equal
measures as for SwishNet and VGG-like models are input and passed through one dense
layer with 128 units and the output layer. The same structure is used for the appended
classifiers of the computed embeddings in Section 4.4 and hence gives an insight into
the learning effects of the preceded architectures. Adam is used as optimization and
Softmax as activation function.

4.2 Input Representation

All datasets were normalized in a range of [-1, 1] in time domain and unified to a
sampling rate of 22050 Hz and 16 bits. The MelSpec representation with 128 bands
and 512 hop size is evaluated as input representation for all networks. Additionally the
original MFCC input representations of the SwishNet and INA approach are included
to check for side effects of the input adaption. The original VGG-like approach already

Fig. 3. VGG-like network architecture. The green line indicates the freezing point of the interme-
diate fine-tuning strategy. The red line indicates the output point of the embedding vector.
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used MelSpecs. The OpenL3 embeddings create batches of features with a feature size
of 512 samples (see Section 4.1) from 100 ms audio frames.

4.3 Implementation Details and Metrics

In all experiments, 10% of the data is used for testing, and 10% for validation. All ex-
periments are repeated using five-fold cross-validation. All data is balanced by random
down-sampling. After transforming the input to MelSpec, it is normalized feature-wise
to zero mean in the range from -1 to 1 and concatenated to batches of 64 frames. Each
network is trained for 200 epochs with the option for early stopping if the validation
accuracy does not increase for 50 epochs. The Adam optimizer [10] with a learning
rate of 10−3 is used for all architectures for best comparability to the original imple-
mentations. Results are presented as the mean accuracy over 5 cross-validation folds
with its standard deviation.

4.4 Transfer Learning Networks and Tasks

For transfer learning, the models are trained with a balanced combination of all four
training sets. Afterwards the output layers are removed from the trained networks (see
Section 4.1) and the remaining layers are fixed and used for embedding calculation. A
trainable classifier is appended consisting of a 128 unit dense layer and a dense output
layer matching the number of the target task classes. Three different freezing positions
for the trained models are evaluated. In the first strategy, only the classifier is trained
while the network weights remain fixed. The second strategy unfreezes the networks in
an intermediate position so the classifier and parts of the networks are fine-tuned. These
positions are illustrated green in Figures 1, 2, and 3, respectively. In a third strategy, all
network weights are unfrozen and fine-tuned along with the classifier. These strategies
do not apply for OpenL3 because of its baseline function. As transfer learning tasks, we
evaluate the following target tasks: (a) SMC with S&S dataset, (b) accompaniment de-
tection with ACMusVF dataset. The goal of this task is to distinguish music pieces with
instrumental accompaniment from vocal-only performances, (c) female vs male singer
classification on the ACMusVF dataset. We refer to this task as gender classification in
singing, (d) ensemble size classification on the ACMusIF set.

5 Results

5.1 Network Architectures Comparison

Figure 4 shows the mean file-wise and frame-wise results over all training sets for
each architecture. Results show that OpenL3 embeddings work well on all datasets
for SMC. Looking at the frame-wise accuracy, SwishNet is slightly below the remain-
ing two CNN-based architectures by around 3%. Figure 5 presents results for binary
SMC and a three-class task which includes noise as the third class. This is performed
for the MUSAN and Marolt19 datasets where noise samples are included. Marolt19
appears to be the most challenging set due to the fact that it does not only consist of
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Fig. 4. Comparison of the mean frame-wise accuracy per architecture for speech/music classifi-
cation averaged over all training sets (MUSAN, GTZAN, Marlot19, ACMusYT).

broadcast material unlike MUSAN. As expected, the accuracy drops for a more complex
task of three classes. The highest drop of 24.3 % occurs for INA in connection with
MelSpec input followed by the VGG-like model. For MUSAN the most significant drop
can be observed for the INA model in connection with MFCC input. The varying re-
sults indicate that the INA architecture might not be well suited for alternative tasks
in contrast to OpenL3 which shows best robustness. Regarding the input representa-
tion no significant performance differences can be observed in Figure 4. Only a slight
improvement for MelSpecs is visible. Figure 5 confirms this trend as MelSpecs have a
slightly better performance on average. In conclusion MFCCs can increase performance
for specific tasks but MelSpecs have a more robust behavior in general hence MelSpec
is used for further experiments.

Fig. 5. Comparison of frame-based accuracy for binary classification versus 3-class classification.
Results are shown for MUSAN (yellow) and Marolt19 (blue) datasets.

5.2 Transfer Learning

Results for all transfer experiments are presented in Table 2. Besides the three network
architectures (INA, SwishNet, and VGG-like), results for the OpenL3 embeddings and



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

90

the DNN baselines are shown. In general the resulting models tend to overfit during
fine-tuning due to the small training data.

Speech Music Classification with S&S: In this experiment, the target task for TL
was kept the same so models are only transferred to an unseen dataset. In Table 2 a learn-
ing effect from the pre-training can be observed for the Slaney & Scheirer dataset. In
detail embeddings from INA and VGG-like models can make better use of pre-training
and gain up to 3 % classification accuracy while the performance of SwishNet remains
at almost the same level. OpenL3 embeddings outperform all other models for this
dataset-task combination.

Table 2. Transfer learning results. Accuracy values are presented for fully frozen (AccFZ ), partly
trainable (intermediate) (AccIN ), and the fully trainable embeddings (AccFT ). Listed are the
results for each architecure using their pre-trained embeddings (Emb) as well as their original
network trained from scratch on the according task (Orig). In addition OpenL3 embeddings and
the two-layer DNN (see 4.1) are listed as baseline.

Task-Set-Combination Model AccFZ [%] AccIN [%] AccFT [%]

Speech Music on S&S

INAEmb 98,8 ± 1,4 97,6 ± 2,1 85,1 ± 4,8
INAOrig - - 93,8 ± 3,0

V GG − likeEmb 97,4 ± 1,5 97,9 ± 1,9 88,9 ± 1,6
V GG − likeOrig - - 95,1 ± 2,1
SwishNetEmb 92,3 ± 2,7 93,0 ± 2,4 95,0 ± 1,7
SwishNetOrig - - 92,9 ± 1,5
OpenL3Emb 99,2 ± 0,4 - -
DNNbaseline - - 92,9 ± 1,9

Accompaniment on ACMus VF

INAEmb 85,2 ± 5,6 82,5 ± 9,1 90,8 ± 5,2
INAOrig - - 80,2 ± 6,6

V GG − likeEmb 88,5 ± 7,4 94,9 ± 3,2 92,7 ± 5,8
V GG − likeOrig - - 92,7 ± 4,9
SwishNetEmb 81,5 ± 4,6 85,1 ± 4,6 93,6 ± 3,2
SwishNetOrig - - 94,0 ± 3,7
OpenL3Emb 99,6 ± 0,5 - -
DNNbaseline - - 96,5 ± 1,7

Gender on ACMus VF

INAEmb 70,0 ± 7,7 47,3 ± 7,9 59,3 ± 7,6
INAOrig - - 67,4 ± 7,0

V GG − likeEmb 71,8 ± 5,2 75,8 ± 9,1 73,5 ± 6,2
V GG − likeOrig - - 73,6 ± 8,1
SwishNetEmb 72,6 ± 5,0 73,1 ± 5,1 78,3 ± 8,9
SwishNetOrig - - 74,9 ± 9,5
OpenL3Emb 72,3 ± 9,6 - -
DNNbaseline - - 72,6 ± 10,3

Ensemble Size on ACMus IF

INAEmb 49,8 ± 5,6 52,1 ± 10,2 56,7 ± 4,5
INAOrig - - 48,8 ± 7,2

V GG − likeEmb 49,7 ± 5,0 51,3 ± 6,8 47,1 ± 3,9
V GG − likeOrig - - 57,9 ± 5,3
SwishNetEmb 46,7 ± 5,7 48,7 ± 6,3 54,3 ± 5,4
SwishNetOrig - - 56,3 ± 5,6
OpenL3Emb 76,2 ± 4,4 - -
DNNbaseline - - 61,4 ± 5,3

Accompaniment detection on ACMusVF: For this task OpenL3 again shows best
results and is followed by the VGG-like embeddings with a performance gap of around
11 %. Despite the close task relation to SMC no architecture overcomes the accuracy
of the plain DNN and hence no learning effect from TL is achieved in connection with
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this task. This is reinforced by the fact that for SwishNet and VGG-like architectures,
the original models perform better than their embedding counterparts.

Female/Male singer classification on ACMusVF: For this task SwishNet embed-
dings show best results closely followed by OpenL3 embeddings. The original networks
for each model show comparable or better performances compared to the fully frozen
embeddings indicating that no learning effect of pre-training is visible. Again the DNN
performs comparable to the best model refuting a benefit of the knowledge transfer.

Ensemble size classification on ACMus-MIR: All created embeddings perform
similar with nearly 50 % accuracy. The baseline architectures of VGG-like and Swish-
Net show better results when trained from scratch excluding the idea of a possible learn-
ing effect. This is confirmed by the plain DNN baseline that outperformed the embed-
dings by around 12 %. The usage of embeddings results in a inverse effect for this task.
Furthermore this experiment engages the most unrelated task relative to SMC in the set
of transfer tasks. The best results are achieved using the unrelated OpenL3 embeddings
with 76.2 %. A file-wise evaluation of OpenL3 results in 84 % accuracy which confirms
the outcome from Grollmisch et al. [6].

Freezing strategies: Inspecting the last two rows of each embedding in table 2
gives insights to freezing strategies for the pre-trained networks. With more degree of
freedom, meaning more trainable layers, the accuracy tend to increase in most cases.
This trend is highly network-dependent and mainly applies to SwishNet models while
INA tends to be more unstable showing a higher fluctuation. VGG-like models perform
best in intermediate state.

6 Conclusions

This work examines the idea of transfer learning (TL) by creating new feature represen-
tations from one source task (pre-training), to use them as embeddings for several tar-
get MIR tasks. Three network architectures (INA, SwishNet, VGG-like) were initially
trained for SMC, and subsequently applied to four new classification tasks. Our exper-
iments show a slight dominance of the MelSpec as input representation over MFCCs
during training. No significant performance difference between the three architectures
is visible for the source task while OpenL3 embeddings consistently showed best SMC
accuracy. In comparison to the networks trained from scratch, pre-training results in a
slight improvement when used with an additional DNN classifier for the source task.
In the TL experiments, the direct combination of MelSpec input and the DNN clas-
sifier surpasses the embedding performance in some cases. These results suggest that
the learning effect of pre-training is not consistent over all experiments. Furthermore,
creating embeddings with tasks closely related to the target tasks show no evident ben-
efit compared to general audio embeddings such as OpenL3, which performed best in
most of the cases. A possible cause can be the self-supervised creation of these em-
beddings which inhabits limitless availability of training data. However, the amount of
training data used for pre-training the different embeddings is not considered in these
experiments and is left for future work.
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Abstract. Fingering decisions of string instruments and other instruments dif-
fer in that the former involves string assignments as well as finger assignments
while the latter is simply a matter of assigning fingers to notes. The present study
introduces a three-level model for fingering decision of string instruments to de-
scribe the structure of the problem and present problem settings of fingering deci-
sion based on the model. Our proposed three-level model provides clear perspec-
tive for some problem settings of fingering decision. We perform a simulation to
demonstrate the flexibility of the three-level model.

Keywords: fingering decision, string instruments, hidden Markov model(HMM)

1 Introduction

String instruments have overlaps in pitch ranges of their strings. As a consequence,
they have more than one way to play even a single note and thus numerous ways to
play a whole song. That is why the fingering decision for a given song is not always
an easy task for string players and therefore automatic fingering decision has been at-
tempted by many researchers. As for applications of HMM to fingering decision, Hori
et al.[1] applied input-output HMM to guitar fingering decision and arrangement, Na-
gata et al.[2] applied HMM to violin fingering decision, and Nakamura et al.[3] applied
merged-output HMM to piano fingering decision. Hori and Sagayama.[4] and Hori[5]
proposed extensions of the Viterbi algorithm for fingering decision.

The purpose of the present study is to point out that fingering decisions of string
instruments and other instruments differ in that the former involves string assignments
as well as finger assignments while the latter is simply a matter of assigning fingers to
notes. To describe the structure of fingering decision of string instruments, we intro-
duce a three-level model for string instruments and provide a unified way of looking
at variations of problem settings of fingering decision. Our proposed three-level model
provides clear perspective for some problem settings of fingering decision. We perform
a simulation to demonstrate the flexibility of our three-level model with fingering deci-
sion from score with finger numbers.

The rest of the paper is organized as follows. Section 2 reproduces the guitar finger-
ing decision model based on HMM[1]. Section 3 points out the difference in fingering
decision between string instruments and other instruments and introduces the three-
level model. Section 4 presents problem settings of fingering decision based on the
three-level model and Section 5 performs a simulation for one of the problem settings.
Section 6 concludes the paper.
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2 Fingering Decision Based on HMM

This section reproduces the guitar fingering decision model based on HMM[1] whose
output symbols are musical notes and hidden states are left hand forms, which corre-
sponds to the problem setting of Section 4.1 in this paper. Although we use the mono-
phonic case as an example to simplify the explanation in the following sections, the
results apply to the polyphonic case as well. See [1] for details of the polyphonic case.

2.1 HMM for fingering decision

To play a single note with a guitar, a guitarist depresses a string-fret pair pi on fretboard,

pi = (si, fi),

with a finger hi of the left hand and picks the string with the right hand. Therefore, a
left hand form qi for playing a single note can be expressed in a triplet qi,

qi = (si, fi, hi),

where si = 1, . . . , 6 is a string number (from the highest to the lowest), fi = 0, 1, . . .
is a fret number, and hi = 1, 2, 3, 4 is a finger number of the player’s left hand (1,2,3
and 4 means the index, middle, ring and pinky fingers). The fret number fi = 0 means
an open string. The MIDI note number of the note played by the form qi is calculated
as follows where osi denotes the MIDI note number of the open string si,

n(qi) = osi + fi.

In this formulation, fingering decision is cast as a decoding problem of HMM where a
fingering is obtained as a sequence of hidden states qi given a score as a sequence of
output symbols nk.

2.2 Transition and output probabilities

The difficulty levels of the moves from forms to forms are implemented in the probabil-
ities of the transitions from hidden states to hidden states; a small value of the transition
probability means the corresponding move is difficult and a large value means easy. We
assume that the four fingers of the left hand are always put on consecutive frets in this
paper for simplicity. This lets us calculate the index finger position (the fret number the
index finger is put on) of form qi as g(qi) = fi−hi+1. Using the index finger position,
we set the transition probability from hidden state qi to hidden state qj as

aij(dt) ∝
1

2dt
exp

(
−|g(qi)− g(qj)|

dt

)
× PH(hj) (1)

where ∝ means proportional and the left hand side is normalized so that the summation
with respect to j equals 1 for all i. The first term of the right hand side is taken from the
probability density function of the Laplace distribution that concentrates on the center
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and its variance dt is set to the time interval between the onsets of the (t−1)-th note
and the t-th note. The second term PH(hj) corresponds to the difficulty level of the
destination form qj defined by the finger number hj .

As for the output probability, because all the hidden states have unique output sym-
bols in our HMM for fingering decision, it is 1 if the given output symbol nk is the one
that the hidden state qi outputs and 0 if the given output symbol is not,

bik =

{
1 (if nk = n(qi))
0 (if nk �= n(qi))

. (2)

3 Three-Level Model for Fingering Decision of String Instruments

This section identifies the fundamental difference in fingering decision between string
instruments and other instruments, and then introduces a three-level model for fingering
decision of string instruments.

3.1 Note-tablature-form tree

For example, on the piano, there is only one key on the keyboard to press for each note,
and therefore fingering decision for a given sequence of notes is a matter of deciding
which finger to press on the key for each note (Fig.1, right). On the other hand, with
the guitar, each note corresponds to several string-fret pairs that play it, and in addi-
tion, we have a matter of which finger to press for each string-fret pair (Fig.1, left). In
other words, fingering decision for the piano is simply a matter of finger assignments,
while fingering decision for the guitar consists of string assignments followed by fin-
ger assignments. This situation with the guitar is illustrated in a tree diagram (Fig.1,
left) which we call “note-tablature-form tree.” While the tree diagram in Fig.1 is for a
monophonic note, we can draw the same diagrams for a polyphonic chord as well.

Fig. 1. Note-tablature-form tree for guitar (left) and corresponding diagram for piano (right) il-
lustrating difference between string instruments and other instruments

3.2 Three-level model

To describe the above-explained situation with fingering decision of string instruments,
we introduce a three-level model for string instruments that consists of (1) note level,
(2) tablature level, and (3) form level (Fig.2). In relation to the notation introduced
in Section 2.1, the note level contains the information of n(qi), the tablature level
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pi = (si, fi), and the form level qi = (si, fi, hi), respectively. In guitar scores, the
score and the tablature contains the information of the note level and the tablature level,
respectively. The finger numbers attached to the notes in the score, together with the
tablature, make up the information of the form level (see Section 4.3). From the view-
point of fingering decision based on HMM, the hidden states corresponds to the form
level and the setting of observed symbols varies depending on the problem settings as
we will see in the following sections.

Note Level

Tablature Level

Form Level

Fig. 2. Three-level model for fingering decision of string instruments

4 Problem Settings Based on Three-Level Model

This section provides a unified way of looking at variations in problem settings of fin-
gering decision based on the three-level model for string instruments, taking the guitar
as an example. Fingering decision is cast as a decoding problem of HMM where the
setting of observed symbols varies depending on the problem settings. The first prob-
lem is a conventional one while the second and third ones obtain clear perspectives in
light of our proposed three-level model.

4.1 Fingering decision from score

In this problem setting, we generate a sequence of forms from a score, taking the note
level as the observed symbols and the form level as the hidden states (Fig.3, left). This
is a conventional and common problem setting in guitar fingering decision and has
been well studied including our previous study[1]. Here we note that the transition
probability reflecting the difficulty of the form transition can be defined only in the form
level and not in the tablature level, which we can see from the formula of transition
probability (1). Even when we only need to generate tablature, we have to perform
HMM decoding in the form level.

4.2 Fingering decision from tablature

In this problem setting, we generate a sequence of forms from a tablature, taking the
tablature level as the observed symbols and the form level as the hidden states (Fig.3,
right). Here we note that a tablature shows only string assignments for notes and does
not contain information of finger assignments, although it is easy for skilled guitarists
to find appropriate finger assignments and thus a fingering for a given tablature. An
application example of this problem setting is difficulty assessment of a tablature where
the difficulty is calculated as the reciprocal of the product of the transition probabilities
along the generated sequence of forms.
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Note Level

Tablature Level

Form Level

Observed symbols

Hidden states

Note Level

Tablature Level

Form Level

Observed symbols

Hidden states

Fingering Decision from Score Fingering Decision from Tablature

Fig. 3. Two problem settings based on three-level model

4.3 Fingering decision from score with finger numbers

There are guitar scores without tablatures with finger numbers attached to some key
notes (Fig.4, left), which is enough for skilled guitarists to find a fingering for whole
phrase. From the viewpoint of our proposed three-level model, this is a case where
the whole information of the note level and the partial information of the form level
are given to generate a sequence of forms. The fingering decision in this case is im-
plemented as a decoding problem of HMM whose observed symbols are the notes and
hidden states are forms limited to ones with indicated finger numbers. We will see some
simulation results of this problem setting in the following section.

Note Level

Tablature Level

Form Level

Partial information
from Form Level+

Fig. 4. Score with finger numbers (left) and corresponding problem setting (right)

5 Simulation

From the problem settings described in the previous section, we perform a simulation
of one presented in Section 4.3 to demonstrate the flexibility of our proposed three-
level model. The results for four scores are given in Fig.5 where the sequence of notes
(C major scale) is common to all and the finger numbers with red circles are given
while other finger numbers and the tablatures are generated by HMM. In the transition
probability (1), we set PH(1) = 0.4, PH(2) = 0.3, PH(3) = 0.2 and PH(4) = 0.1
which means forms using the index finger are the easiest and the pinky finger the most
difficult. From the results, we see that HMM generates appropriate fingerings for all
the scores minimizing change in the index finger position and that specifying a finger
number to one note can change fingerings for the rest seven notes.
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Fig. 5. Simulation results of fingering decision from score with finger numbers

6 Conclusion

We have pointed out the difference in fingering decision between string instruments and
other instruments and introduced a three-level model for fingering decision of string
instruments. Based on the model, we have provided a unified way of looking at three
variations in problem settings of fingering decision and demonstrated the flexibility of
our proposed three-level model using a simulation for fingering decision from score
with finger numbers. There are other instruments than string instruments for which we
have more than one way to play a single note. For such instruments, we can consider a
fingering model with a middle level corresponding to the tablature level of our model for
string instruments. We leave the extension of our three-level model to such instruments
to our future study.
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Abstract. Dynamics are one of the fundamental tools of expressivity in a perfor-
mance. While the usage of this tool is highly subjective, a systematic methodol-
ogy to derive loudness markings based on a performance can be highly beneficial.
With this goal in mind, this paper is a first step towards developing a methodol-
ogy to automatically transcribe dynamic markings from vocal rock and pop per-
formances. To this end, we make use of commercial recordings of some popular
songs followed by source separation and compare them to the karaoke versions
of the same songs. The dynamic variations in the original commercial recordings
are found to be structurally very similar to the aligned karaoke/multi-track ver-
sions of the same tracks. We compare and show the differences between tracks
using statistical analysis, with an eventual goal to use the transcribed markings
as guiding tools, to help students adapt with a specific interpretation of a given
piece of music. We perform a qualitative analysis of the proposed methodology
with the teachers in terms of informativeness and accuracy.

Keywords: Vocal Performance Assessment, Music Education, Loudness Mea-
surement, Dynamics Transcription

1 Introduction

Musical expression is an integral part of any performance. The subjective nature of this
term makes it difficult to identify “whether the expressive deviations measured are due
to deliberate expressive strategies, musical structure, motor noise, imprecision of the
performer, or even measurement errors” [1]. While the choice of expressions used may
vary from performer to performer and also from performance to performance, deriving
the expressions used in a specific interpretation of a performance can offer significant
advances in the realm of music education. Not only can it help students learn from a
specific musical piece, insights about the variations in expressions can add to possible
set of choices that one can employ during a performance.

With the advent of online practice tools like music minus one, audio accompani-
ments, users have a wide variety of mediums to chose to practice with [2]. However,
most of these tools are limited to pitch and rhythm correctness, offering little or no in-
sight about the expressive variations of the performance. In this work, we focus on de-
riving the dynamic variations of vocal rock and pop performances via loudness feature
extracted from the audio recordings. The goal of this paper is to develop a methodology
to extract and compare the dynamic variations of similar pieces of vocal performances
that can lay the foundation of transcribing dynamic markings of vocal performances.
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This overall idea can be broken down into a set of 2 questions that we intend to
address through our work.

(i) Given a mix, is it possible to transcribe dynamics using the source separated
voice signal with the same accuracy as would be achieved when the vocal stem of the
mix is available?

(ii) Can we analyze the similarities and differences between two loudness curves in
order to provide feedback on dynamics?

In order to address the first question, we use state of the art source separation al-
gorithms to extract vocal tracks from mixes followed by loudness computation, and
compare them to the loudness curves of the vocal stems available for the same mix. To
address the second question, we have conducted a preliminary experiment comparing
the loudness curves of the source separated commercial mixes with multi-track karaoke
versions with vocal stems. Overall the structure of the paper is as follows. Section 2
presents some fundamental information about the kind of loudness scales and the study
of dynamics in music information retrieval. In section 3, we describe a methodology
of the proposed approach followed by preliminary investigation of the comparison of
loudness curves in section 4. The influence of vocal source separation on loudness com-
putation is also presented in section 4.

In section 5, we conduct a case study where the dynamic variations of the two
versions (karaoke and commercial) have been analyzed by a teacher to give feedback
followed by section 6 with conclusions and future work.

2 Background and Related Work

Significant work has been done to model performance dynamics by measuring the loud-
ness variations [3] with a conclusion that the variations in dynamics are not linear. Sev-
eral measurement techniques have been defined to measure the loudness of signals.

2.1 Loudness Measurement Scales

Of the scales available for loudness measurement, some are inspired by the subjective
psychoacoustic phenomenon of human ear, while others are objective in terms of mea-
surement. The most commonly used measurement is the dBFS scale, or loudness unit
full scale. The more recently adopted industry standard is the EBUR scale [9]. For our
analysis, we make use of the sone scale, which is based on psychoacoustic model, and
compare our results to RMS values computed from the signals directly.

Sone Scale This scale is inspired by the psychoacoustic concept of equal loudness
curves, with the measurement being linear i.e. doubling of the perceived loudness dou-
bles the sone value [10]. While the phon scale is more closely associated with dB scale,
a phon value of 40 translates to 1 sone. The relationship between phons and sons can
be modelled using the equation:

S =

{
2(L−40)/10, if P >= 40.

(L/40)2.642, P < 40.
(1)
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RMS RMS or root mean square is the square root of the mean square of the amplitude
of the signal.

RMS = sqrt((x2
1 + x2

2....x
2
n)/N) (2)

2.2 Dynamics in Music Information Retrieval

Work on measurement of dynamics has been typically centered around Western Classi-
cal piano performances, incorporating dynamics as an expressive performance parame-
ter that can vary across performers/performances [4]. Kosta et al. [5] used change-point
detection algorithm to measure dynamic variations from audio performances and com-
pared them to the markings in the score. Further, they applied machine learning ap-
proaches like decision trees, support vector machines (SVM), artificial neural networks
[6] to predict loudness levels corresponding to the dynamic markings in the score. They
found that the loudness values can be predicted relatively well when trained across
recordings of similar pieces, while failing when trained across pianists’ other perfor-
mances.

Another approach to model dynamics is using linear basis functions to encode struc-
tural information from the score [8]. Each of the “basis function” stand for one score
marking like stacatto, crescendo, the active state being a representation of the expres-
sive marking present in the score and vice-versa. Chacón et al. [7] carry out a large
scale evaluation of expressive dynamics on piano and orchestral music using linear and
non-linear models.

3 Methodology

A diagram of the proposed methodology is presented in Figure 1. In case solely the mix
is available, the input audio mix is passed to a source separation algorithm, U-Net [16]
to get the separated vocal track. Thereafter, we extract the loudness from the separated
vocal track or vocal stem using the sone scale and RMS as described earlier. The loud-
ness extraction for the sone scale is carried out in the same way as proposed by Kosta
et al [5] in their analysis. Each of the loudness curves are normalized by dividing with
the max value for the rendition in order to carry out a fair relative comparison between
different renditions. This step makes sure that only the relative values are compared
and not the absolute ones. Finally, we apply peak picking operation to get a range of
overall dynamics that can be further processed to map to specific dynamics based on
musicological knowledge. It is to be noted that we limit the current set of experiments
to comparison of loudness curves, leaving the actual mapping of loudness values to
musically meaningful values as future work.

4 Experiments

4.1 Data Curation

We have primarily used three sources of data for our analysis:
(i) Commercial official recordings of rock and pop songs
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          U-Net      Isolated Vocal Track

  Extract Loudness Curve    SmootheningMap to dynamics

Fig. 1: Methodology for extracting loudness from a mix.

(ii) Custom karaoke tracks from the site1 exactly replicating the official tracks
(iii) Musdb dataset to validate the efficacy of source separation algorithm
To evaluate the impact of singing voice source separation we use the musdb dataset

containing 150 multi-track songs. For the commercial recordings, we conducted a pre-
liminary investigation with 7 popular tracks shown in Table 1.

For the commercial popular recordings, only the mixes are available while for the
karaoke versions, we have access to all the stems. This leads to 3 sources of data for the
analysis of the same tracks - source separated vocals from the commercial mix (CSS),
source separated vocals from the karaoke mix (KSS), vocal stems from the karaoke
stems (KSV).

4.2 Experimental Setup

As mentioned above in the methodology, we first apply source separation using the
spleeter implementation of UNet [13] to separate the mix into two stems - vocal track
and the accompaniment. This step is skipped in case vocal stems are available for anal-
ysis. We use a block size of 512 samples or 11 ms with a hanning window, and a hop
size of 256 samples or 5.5 ms. We follow the same block and hop size for the sone scale
as well as RMS values. For loudness extraction using the sone scale, we use ma sone
function in Elias Pampalk’s Music Analysis toolbox [11] in Matlab. The RMS values
are extracted using the essentia library [15]. We further apply smoothening operation
using two methods - “loess” with smooth function in matlab (based on locally weighted
non-parametric regression fitting using a 2nd order polynomial) and exponential mov-
ing average [19][EMA]. Based on experimental testing, we use a span of 5% for the
loess method. With the exponential moving average smoothening, we use an attack of
2 ms and release time of 20 ms. In the current set of experiments, the RMS smoothen-
ing is carried out using EMA methodology, and sone scale is smoothened using loess
method. This operation was followed by peak picking operation to get a sense of overall
dynamics followed. The peak picking parameters were experimentally set to a threshold
of 0.1, and a peak distance of 1.2 seconds. We used the madmom library [14] for peak
picking operation with RMS, and findPeaks function in maltab with sone scale loud-
ness extraction. Figure 2 and Figure 3 show an example of computation of loudness

1 https://www.karaoke-version.com/
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value using Sone scale and RMS respectively, followed by smoothening operation and
detected peaks for the song ‘Don’t know why’ by Norah Jones.
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Fig. 2: Loudness using sone scale for Don’t Know Why by Norah Jones
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Fig. 3: Loudness using RMS values for Don’t Know Why by Norah Jones
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4.3 Results

Overall Loudness Comparison between Renditions In order to compare the structure
similarity of the loudness curves, we computed Pearson Correlation Coefficient of the
smoothened curves extracted from the audio signals. Table 1 shows the values observed
for each of the 7 songs. As evident from the table, most values are greater than 0.8,
and in the case of comparing source separated version with the clean karaoke version,
most values are greater than 0.9 indicating the robustness of the methodology with the
pre-processing step of applying source separation.

Local dynamics To account for local dynamic changes, we compute the differences be-
tween consecutive peaks and derive a histogram from all the local differences. Further,
the computed peak differences for each song are combined together for all songs from
the same source i.e. commercial source separated, karaoke source separated and karaoke
stem vocal. Thereafter, we use the non-parametric Kolmogorov-Smirnov 2 sample test
which fits the properties of our data. This test is computed between each pair of the 3
histograms corresponding to the 3 sources. We find that for each of the comparisons,
the p-value was 0.99 indicating no statistically significant differences between the his-
togram plots. These results are in line with our initial claim that the overall structure of
the local dynamics changes as reflected in the loudness curves. These analysis results
were the same for the histograms obtained using RMS values and sone values.

Table 1: Chosen songs and Pearson Correlation Coefficients for smoothened loudness
sone curves

Song Name Artist CSS, KSV KSS, KSV CSS, KSS

Skyfall Adele 0.867 0.994 0.931
Torn Natalie Imbruglia 0.701 0.946 0.800
Fade into you Mazzy Star 0.943 0.887 0.897
Imagine John Lennon 0.889 0.981 0.440
Say you won’t let go James Arthur 0.955 0.835 0.800
Don’t know why Norah Jones 0.866 0.997 0.870
Son of a preacher man Dusty Springfield 0.701 0.957 0.669

Global Dynamic Range The global dynamic range of each of the songs is computed
using difference in max peak and min peak extracted from the smoothened loudness
curve. As indicated in Table 2, the observed global dynamic range based on peak values
are mostly similar in the case of karaoke source separated version and the karaoke vocal
stem version with the exception of the song ‘Son of a preacher man’ with RMS values,
and ‘Fade into you’ with sone values.

Outlier Analysis With a deeper analysis of the song ‘fade into you’, we find that there
is a guitar section in the original song that becomes an artifact in the source separation
output. This leads to a peak being wrongly detected increasing the overall dynamic
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Table 2: Observed dynamic range with RMS and sone values
RMS Sone

Song Name CSS KSS KSV CSS KSS KSV

Skyfall 0.460 0.156 0.176 0.503 0.477 0.489
Torn 0.092 0.138 0.206 0.355 0.199 0.213
Fade into you 0.144 0.195 0.167 0.306 0.354 0.182
Imagine 0.172 0.149 0.171 0.320 0.287 0.271
Say you won’t let go 0.187 0.138 0.142 0.272 0.190 0.199
Don’t know why 0.256 0.222 0.217 0.526 0.489 0.462
Son of a preacher man 0.150 0.227 0.371 0.275 0.339 0.295

range for both CSS and KSS resulting from peak detection. A high value of Pearson
Correlation Coefficient between CSS and KSS as compared to KSS and KSV reflects
from the fact that both of them have source separation as a pre-processing step, and
both the versions contain similar artifacts.

4.4 Influence of voice source separation on loudness computation

In order to validate the efficacy of the source separation algorithm prior to using it for
evaluating dynamics, we computed the Pearson Correlation of the smoothened loudness
curves extracted from the mix with the smoothened loudness curves of the vocal stem
tracks available with the musdb dataset [17].

As evident from the histogram in Figure 4, 138 values of the 149 songs evaluated
are greater than 0.90. There are 6 songs with values between 0.80 and 0.90, and only
1 song with a value less than 0.50. The mean of the values is 0.960 and the standard
deviation is 0.081. These results look promising to be able to use source separation as
a prior step for dynamics analysis.

Outliers The song with the lowest value of correlation coefficient “PR-Happy Daze”
contains a lot of instrumental music without much vocal component. Hence, the output
of source separation algorithm is mostly artifacts. The song “Skelpolu - Resurrection”
with a correlation coefficient of 0.58 has similar challenges.

5 Discussion

Work on transcription of dynamics is a challenging task for several reasons. One of the
primary reasons being lack of sufficiently annotated data for singing voice to validate
the efficacy of these algorithms.

Hence, in order to validate our approach, we conducted a case study with the song
‘Don’t know why by Norah Jones’ where we asked a teacher with 6 years of Western
singing teaching experience to compare the two tracks and provide feedback on the
dynamic changes. Following is the feedback that we received from the teacher for some
phrases of both tracks.
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Fig. 4: Distribution of Pearson Correlation Coefficient applied to smoothened loudness
curves of musdb dataset

I waited ’til I saw the sun
For Norah’s Version:”Norah’s dynamics change over the line. “I’ve” is ‘mp’. “Waited

till” starts as ‘mf’, which gradually drops down to ‘mp’ as she ends the line, can be seen
as a diminuendo.” For the Backing Track Version: ”Dynamically, the singer is ‘mf’
throughout. This sounds like the kind of vocal take where the original vocals have been
compressed one too many times.”

I don’t know why I didn’t come
For Norah’s Version: ”Dynamically between an ‘mp’ and ‘mf’”. For the Backing

Track Version: ”Once again at an ‘mf’. Vocals have definitely been compressed to sound
at the same level consistently”.

Case Study Results As evident from the first phrase, the teacher claimed that Norah
Jones used a wider range of dynamics in her performance as compared to the cover
version. Figure 5 shows the loudness curve of the cover version along with Norah Jones
version using the sone scale. The classified dynamic markings for the two renditions
are shown in the same plot. As compared to Norah’s version of the same song, there is
definitely a relatively very low difference between consecutive initial peaks in the cover
version. The global dynamic range observed in the results section for this song is also
in line with this observation. Similar results can be seen with RMS computation.

Challenges Despite having noisy artefacts and interferences from other instruments,
state of the art source separation may be adequate for music analysis, when extracting
dynamics. However, the peak detection method may not be robust enough to different
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Fig. 5: Loudness using sone scale for Don’t Know Why

performances and require calibration. Smoothing should be done w.r.t the tempo of the
song.

While our initial case study showed some promising results, scaling such a system
is still a very cumbersome task. Apart from the limitations with data and annotations,
we are constrained by the knowledge that can help us realize the right granularity of
transcription. For example, expressive markings like crescendo and diminuendo are
associated with phrase boundaries [18], but the reverse might not be true. We would
need collaborative efforts from multiple fronts in order to take advantage of the recent
advances in the field of audio signal processing.

6 Conclusion and Future Work

We presented a methodology to extract dynamics from a performance using loudness as
a feature. In the current investigation, we found that it is possible to use these loudness
metrics to reach a level of relative changes that can in turn be mapped to dynamics.
In future, we intend to discretise these relative values to map them to musically mean-
ingful terms that can be used for providing the right feedback to students. Apart from
that, in order to realize the overall goal of transcription, we intend to continue annota-
tions of popular songs and further apply data driven approaches of machine learning to
automatically derive the dynamic markings.

We also intend to apply the current methodology to student recordings to validate
the efficacy of the system, and if the approach can be used to provide feedback on dy-
namics to students.
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Abstract. We present here a pipeline for the automated discovery of repeated
motifs in audio. Our approach relies on state-of-the-art source separation, pre-
dominant pitch extraction and time series motif detection via the matrix profile.
Owing to the appropriateness of this approach for the task of motif recognition
in the Carnatic musical style of South India, and with access to the recently re-
leased Saraga Dataset of Indian Art Music, we provide an example application
on a recording of a performance in the Carnatic rāga, Rītigaul.a, finding 56 dis-
tinct patterns of varying lengths that occur at least 3 times in the recording. The
authors include a discussion of the potential musicological significance of this
motif finding approach in relation to the particular tradition and beyond.

Keywords: Musical Pattern Discovery, Motif Discovery, Matrix Profile, Pre-
dominant Pitch Extraction, Carnatic Music, Indian Art Music

1 Introduction and Related Work

Short, recurring melodic phrases, often referred to as “motifs”, are important building
blocks in the majority of musical styles across the globe. The automatic identification
and annotation of such motifs is a prominent and rapidly developing topic in music
information retrieval [1–4], playing a significant role in music analysis [5–7], segmen-
tation [8–10] and development of musical theory [11–13]. No consensus exists on how
this is best achieved, and indeed difficulty and differences in evaluation make it hard to
contextualize the efficacy of a method outside of the task to which it is applied. A thor-
ough review and comparison of approaches that handle symbolic music representations
can be found in [1] and [4] however in this paper we focus on the much more common
case of music without notation, extracting repeated motifs from audio.

Difficulty in working with raw audio for this task stems from the incredibly dense
amount of information contained in audio signals, simultaneously clouding that which
we might be interested in and providing a heavy workload for computational meth-
ods. A common method of reducing this complexity is to extract from the raw audio
an object or feature set that captures the aspect of the music most relevant to the type
of motif desired, and to subsequently compute some self-similarity metric between all
subsequence pairs to group or connect similar sections [14, 15]. This could take the
form of audio features such as Mel-frequency cepstral coefficients (MFCC) [16, 17]
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or chroma [15, 18], rhythmic onsets [19, 20] or monophonic pitch [21, 22]. When per-
formed successfully, it is the latter that provides an abstraction with the most informa-
tion pertaining to the melody in audio. And with more recent advances in both pre-
dominant pitch extraction [23] and time series motif detection [24], we are afforded
the opportunity to revisit the approach of predominant pitch extraction/self-similarity
in computationally feasible time on relatively large time scales.

Certain musical styles are particularly suitable for this type of analysis: for exam-
ple, those for which automated transcription is not yet possible, and where the symbolic
to sonic gap is such that musically salient units may sometimes be better characterised
by segments of continuous time series pitch data than by transcriptions. This is the
case in Indian Art Music (IAM), including Hindustani and Carnatic styles. Automated
motif detection in these traditions is a limited but active area of research. In the case
of Carnatic music, svaras (notes) are coarticulated (merged) through gamakas (orna-
ments) [25]. This characteristic provides particular challenges for processes involving
automated segmentation, and can even mean that different Carnatic musicians’ annota-
tions of the same phrase may vary subtly in places, with different degrees of symbolic
detail being possible. This leaves motif detection through time series pitch data as one
of the most viable and popular approaches to finding meaningful melodic units in the
style [26–28].

In this paper we demonstrate an approach for the automated discovery of repeated
motifs in audio: state-of-the-art source separation [31], predominant pitch extraction
using the Melodia algorithm [23] and ultra-fast means of time series motif detection
via the matrix profile [24]. Owing to the appropriateness of this approach for the task
of motif recognition in Carnatic music, and with access to the recently released Saraga
Dataset of IAM [32], we provide an example application, applying these existing meth-
ods in this tradition. All code is available on GitHub3 with a Jupyter notebook walk
through of both the generalized and IAM-specific code.

2 Dataset

We demonstrate our approach on an example recording from the Saraga dataset [32].
Developed within the framework of the CompMusic project4 and openly available for
research, Saraga comprises two IAM collections, representing the Hindustani and Car-
natic traditions. Both collections comprise several hours of music with accompanying
time-aligned expert annotations and relevant musical (e.g. rāga, tāla, form) and edito-
rial (e.g. artist, work, concert) metadata. In this work we focus on a performance taken
from the Carnatic collection, 168 of which contain separate microphone recordings of:
lead vocal, background vocal (if present), violin, mridangam and ghatam (if present).
However, since these tracks are recorded from live performance, the multi-track audios
in the dataset contain considerable background leakage, i.e., are not completely isolated
from the other instruments.

We access and interact with the Saraga dataset through the mirdata library [33]. This
tool provides easy and secure access to the canonical version of the dataset, while load-

3 https://github.com/thomasgnuttall/carnatic-motifs-cmmr-2021/
4 https://compmusic.upf.edu/
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ing and managing the dataset contents (audio, annotations and metadata) to optimize
our research pipeline.

3 Methodology

The process consists of two stages (1) the extraction from audio of a vocal pitch track,
which consists of a one-dimensional time series representing the main melodic line of
the performance and (2) the use of self-similarity euclidean distance to identify likely
candidates for repeated motifs in the main melodic line.

3.1 Predominant Pitch Extraction

The quality and consistency of the predominant pitch extraction is paramount. Given
the shortage of training data and algorithms to extract the vocal pitch from Carnatic
music signals, our raw audio recording is subject to three processing steps to arrive at a
one dimensional time series of pitch values representing the main melodic line.

Isolating the Vocal Source Where possible we use the vocal track recording for anal-
ysis (still containing leakage from other instruments). If this is not available, the mix
is used. For the isolation of voice from the background instruments (both in mixed and
vocal tracks), we use Spleeter, which is a deep learning based source separation library
which achieves state-of-the-art results on automatically separating vocals from accom-
paniment [31].

Extracting the Predominant Pitch Curve We use one of the most popular signal pro-
cessing based algorithms for predominant pitch estimation from polyphonic music sig-
nals, the Melodia algorithm [23], applying an equal-loudness filter to the signal before-
hand to encourage a perceptually relevant extraction. In the majority of studies attempt-
ing this task in IAM, Melodia has achieved consistent and viable results [26,28–30,34].
We use a time-step of 2.9ms for the extraction.

Post-Processing Two post-processing steps are applied to the pitch track. (1) Gap in-
terpolation, linearly interpolating gaps of 250ms or less [36], typically caused by glottal
sounds and sudden decrease of pitch salience in gamakas and (2) Gaussian smoothing
with a sigma of 7, softening the curve and providing a more natural, less noisy shape.

The final extracted pitch track is a time-series of n pitch values, P = p1, p2, ..., pn.

3.2 Repeated Motif Discovery

To search P for regions of similar structure we look for groups of subsequences that
have a low euclidean distance between them. The subsequence length to search for, m
is a user-defined parameter of the process.
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Matrix Profile An efficient method of inspecting the euclidean distances between pair-
wise combinations of subsequences in a time series is the matrix profile [24]. Given a
time series, T , and a subsequence length, m, the matrix profile returns for each subse-
quence in T , the distance to its most similar subsequence in T . The STAMP algorithm
computes the matrix profile in impressive time by exploiting the overlap between sub-
sequences using the fast Fourier transform, requiring only one parameter, subsequence
length, m [24]. We use the non-z-normalized distance, since we are interested in match-
ing subsequences identical in shape and y-location (i.e. pitch).

The matrix profile is therefore defined as MP = ed1, ed2, ..., edn−m where edi
is the regular euclidean distance between the subsequence of length m beginning at
element i and its nearest neighbour in P .

Exclusion Mask To ensure that only subsequences of interest are considered, a mask
of subsequences in P to exclude is computed by applying a series of exclusion functions
to each subsequence. These exclusion functions are informed by expert understanding
of what constitutes a relevant motif in the tradition. Explicitly, the exclusion mask,
EM = em1, em0, ..., emn where emi is either 1 or 0, yes or no, does the subsequence
satisfy any of the following:

– Too silent - more than 5% percent of the subsequence is 0 (i.e. silence)
– Minimum gap - subsequence contains a silence gap of 250ms or more
– Too stable - in more than 63% of cases for a rolling window of 100, the average

deviation of pitch from the average is more than 5 Hz. This step is designed to
exclude subsequences with too many long held notes - although musically relevant,
not interesting from a motific perspective. A similar approach is taken in [26]

Subsequences that correspond to a mask value of 1 are not considered valid and not
returned.

Identifying Motif Groups The search for groups of repeated motifs begins by looking
for a parent subsequence; those in P that have the lowest euclidean distance to another
subsequence i.e. minimas in MP . The assumption being that if these subsequences
have one very near neighbour, i.e. they are repeated once, then they are more likely to
occur multiple times; a similar approach is used in [27].

For a candidate parent motif, we use the MASS similarity search algorithm [24] to
calculate the non-normalised euclidean distance to every other subsequence in the pitch
track, returning those that satisfy the requirements set by the parameters; topN,maxOcc,
minOcc and thresh. Algorithms 1 and 2 describe the process and parameters.

Output The returned motif groups are arrays of start indices in P . The number of
groups and occurrences in each is influenced by the topN , minOcc and maxOcc pa-
rameters.
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Algorithm 1 Identify groups of motifs with low inter-group euclidean distance
1: procedure GETMOTIFGROUPS

2: MP ← matrix profile array from Matrix Profile
3: P ← pitch sequence array from Predominant Pitch Extraction
4: EM ← exclusion mask array from Exclusion Mask
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22: MP[mtf - m : mtf + m] ← ∞ � clear part of array to avoid future discovery
23: nGroups ← nGroups + 1
24: allMotifs ← append motifs
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(a) Motif 7 - 2 seconds

(b) Motif 9 - 4 seconds

(c) Motif 9 - 5 seconds

Fig. 1: Overlaid pitch contour plots of three returned motif groups. The y-axis of each
figure represents cents above the tonic (S) of 196Hz, divided into the discrete pitch
positions defined in Carnatic music theory for this rāga - S, R2, G2, M1, P, D2, N2 [35].
R2 is two semitones (200 cents) above the tonic, S, and G2 is one semitone (100 cents)
above R2, and so on. The oscillatory melodic movement that can be seen cutting across
these theoretical pitch positions is typical of the style, illustrating the challenges of
locating individual ’notes’, either through expert annotations or automatically.

4 Results

We include the results of our process applied to a performance by the Akkarai Sisters of
a composition titled Koti Janmani5, by the composer Oottukkadu Venkata Kavi, which

5 https://musicbrainz.org/recording/5fa0bcfd-c71e-4d6f-940e-
0cef6fbc2a32
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is set in the Carnatic rāga, Rītigaul.a. The process is run for pattern lengths of 2,3,4,
5 and 6 seconds using parameters; topN = 15, minOcc = 3, maxOcc = 20. The
parameter thresh is selected by subjective evaluation of the patterns returned in one
motif group, choosing a value beyond which consistency is lost.

The number of significant motif groups found for 2, 3, 4, 5 and 6 second runs is 15,
15, 11, 11 and 4 respectively. For the code and full results we refer the reader to the
GitHub repository. Fig. 1a, 1b and 1c present the pitch plots associated with the top 5
occurrences of an example pattern in the 2, 4 and 5 seconds groups respectively.

5 Discussion

Due to the current lack of complete (i.e., saturated) ground truth annotations in the
Saraga dataset, it is difficult to evaluate our application systematically. Creation of such
annotations are ongoing as part of this project. In the meantime, however, the nature of
the task and size of the results allow us to reflect on the coherency between patterns and
their significance within the tradition.

The high degree of similarity between patterns returned within groups is obvious
even to listeners who have no experience of the style, and can be appreciated from
both the audio and pitch plots. This similarity is unsurprising, we choose a modest
euclidean distance threshold and the process returns motifs that correspond to areas of
pitch that are very similar by this measure. It is however a testament to the quality and
consistency of the pitch extraction process and audio in the Saraga dataset [32], both
resources not yet available in previous works. And more impressive still, also unseen
in other works, is that these results can be achieved relatively quickly on a personal
machine requiring little user input: pattern length, m and euclidean distance threshold,
thresh (easily tuned in negligible time). This is due to the efficiency of the STAMP and
MASS algorithms in computing the all pairs self-similarity [24].

Of course, we are more interested in whether the consistent results identified by a
process like ours have the potential to contribute to ongoing musicological endeavours
of pattern recognition, documentation and music analysis in the Carnatic tradition. Ini-
tial evaluation by the third author, who has expertise in the tradition [25], suggests that
that there is a high degree of musical similarity across the returned patterns in each
group. At least the first few matches, and often all of the patterns, in each group would
be considered by experts in the style to consist of the same motifs, or motif fragments.
Some of the returned groups contain whole motifs that are particularly important for
this rāga; Rītigaul.a is one of the Carnatic rāgas that is expressed through a number of
characteristic motifs, sometimes referred to as pidi (catch-phrases), sañcāras or prayo-
gas [35].

Two examples of particularly musically significant motifs returned can be seen in
Fig. 1a and Fig. 1b. Fig. 1a shows a frequently recurring phrase in this composition
that includes the motif “npnn” (expressed here in sargam notation, which is used by
practitioners to represent Carnatic svaras). The fact that 11 results are returned for this
pattern (only five of these are illustrated for the sake of visual clarity) points to both
the significance of the phrase in this composition, and also the importance of the mo-
tif “npnn” in the rāga [35]. Fig. 1b consists of another recurring characteristic phrase
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“ssndmmnns”, which is amongst the annotations of characteristic phrases identified by
Carnatic musicians for the Saraga dataset [32].

The musicological applications of this process as it stands are limited to some extent
by the fact that some of the matches returned are not full motifs, but rather are partial:
for example, including part of one motif and then part of another (e.g., 5-second motif
0) or not returning the full motif (e.g., 5-second motif 1).6 Segmentation at musically
meaningful junctures such as silences or articulation of consonants should improve this.
Another problem is that the process currently often returns multiples of the same motif,
but with different top matches (e.g., 5-second motif groups 9 and 10). Lastly, it is clear
that we need to evaluate the results against comprehensive annotations of all motifs in
the performance,7 to discover whether the process returns a good number of the total
number of occurrences.

One interesting feature is that the process, in addition to returning precise matches
of motifs, also identifies those that are similar but not identical. This could be particu-
larly useful in a style such as Carnatic music which often employs a theme and variation
structure, where phrases are repeated many times but with various elaborations. We can
see an example of this returning of non-identical, but musically closely-related motifs
in Fig. 1c where 4 motifs are returned, with two of them including a variation in the
period between 0.5-1.5 seconds. Any process used to identify motifs in Carnatic mu-
sic for musicological purposes would ideally show this degree of flexibility, in order to
provide useful and meaningful results. Finally, considering the significance of recurring
motifs in the vast majority of musical styles, it seems likely that this process would be
musically relevant beyond the specific case of Carnatic music.

6 Further Work

Close scrutiny of the results offers potential lines of improvements; variable length
motif detection could help capture full motifs rather than partial motifs, so too could
more tradition-specific exclusion rules such as consonant onset detection, which should
aid in further constraining the search to whole motifs due to the fact that the style is
melismatic, with several svaras often sung to one syllable. An essential next step for the
continuation of this work is the development of a more empirical evaluation framework
of comprehensive ground truth motifs created in collaboration with expert performers
of the tradition. We also recognize that to facilitate inter-recording discovery, a dynamic
time warping distance measure or tempo normalisation might be necessary.

7 Conclusion

We hope to have demonstrated the effectiveness of predominant pitch extraction and
matrix profile/self-similarity for the task of repeated motif identification and annotation
in audio. We highlight its potential for these tasks in Carnatic music, a tradition where

6 Please refer to the Github repository for results not plotted here.
7 Although some motifs are annotated in the Saraga dataset, these annotations are not complete.

Such annotating is extremely time consuming and must be done by practitioners of the style.
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transcriptions into symbolic representation can show variance, and so where working
directly with time series pitch data from audio is a more promising approach to motif
identification. Alongside this document we provide the code and full results for the
application to this tradition as well as to example audio from other musical styles.
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for Raga recognition. In: Proceedings of the 17th International Society for Music Information
Retrieval Conference, pp. 751–757 (2016)



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

119

Noise Reduction Using Self-Attention Deep Neural
Networks
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Abstract. In recent years, there has been a lot of research on the task of source
separation, which is the separation of sound sources from a piece of music into
vocal and accompaniment components. This paper proposes a model that intro-
duces self-attention to Open-Unmix, an open source software for the source sep-
aration task. Self-attention is a mechanism that learns and determines the data
flow itself in neural networks. We applied this model to a speech separation task
to remove noise from speech, and compared it with previous methods using an
objective evaluation measures (SDR, ISR, SAR). The results show that a pro-
posed method outperform the previous methods in SDR. Furthermore, the t-test
showed a significant difference between the two methods.

1 Introduction

Recently developed deep learning techniques have been used in the study of sound
source separation, and their accuracy has been dramatically improved. Source sepa-
ration refers to the task of extracting a single source from a mixture of sources. An
example is to separate the signals of specific instruments from a pop music piece. This
technique is useful for removing vocal components to create a karaoke sound source, or
for creating a score for each instrument in a piece of music. Research on music source
separation has been actively conducted to expand the number and types of sources to
be separated as well as the accuracy of the separation. Another source separation task
is to remove noise from a noisy speaker’s speech signal. This paper proposes a method
for extracting speech from noisy speech by removing noise.

A neural network propagates data from input to output in a computational manner
according to a pre-designed network structure. For many problems, the performance
can be improved by designing the structure using prior knowledge. However, it is diffi-
cult to improve the efficiency of learning in areas that cannot be compensated by prior
knowledge. Self-attention is a method designed to deal with these problems by learning
and determining the way the data flows itself, paying attention to the results of its own
intermediate calculations, and calculating relevance by paying attention to all positions
in the same sequence. It has been applied in fields such as machine translation and
image generation [6][8]. Self-attention has also been applied to source separation [3],
where each time segment is associated with other time segments that share the same
repetitive patterns, and these repetitive patterns are used as additional information for
source separation. Self-attention is an attention mechanism that indicates the similarity
and importance between the elements of itself, and for each element it calculates the
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query Q, key K, and value V using that element (the same values are used for Q, K,
and V ). When dk is the dimensionality of the query and key, it is computed as in Eq.
(1). The inner product of the query and the key is calculated and divided by the number
of dimensions to take into account the context of the whole series, and then the soft-
max function is applied to prevent the gradient from being lost. Then, by multiplying
the calculated weights by the same values as the original input, the output takes into
account the context of the training.

attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Self-attention controls which elements are weighted based on the similarity of the
query and key. As a result of learning, if it is better to read from an element, the cor-
responding query and key are updated to be closer, and if it is better not to read from
an element, they are updated to be farther apart. In this way, the system automatically
decides which element to read.

In [3], self-attention was introduced into a model called Dense-Unet, and it was
shown that self-attention leads to improved accuracy in source separation. Dense-Unet
was created by synthesizing a structure called Dense Net, which directly connects all
layers, and a structure called U-Net, which has skip connections to pass information
at each layer between encoders and decoders. Although the Dense-Unet model showed
high accuracy compared to previous studies, they showed that the accuracy was further
improved by introducing self-attention.

In addition to the above studies, various other methods have been proposed for
source separation models. In a study of source separation using a transfer learning ap-
proach [5], a model used for speech recognition is trained on a large dataset, and the
features are transferred to a source separation model using DenseNet, thereby solving
the conventional problem of not being able to maintain long-term dependencies. In this
paper, we present an audio query-based separation. In a study of audio query-based
separation [2], various types of sound sources are separated by directly compressing
the same sound source as the musical instrument to be separated into a latent vector and
feeding it to the U-Net model as the target information to be separated.

The purpose of this study is to further improve the accuracy of Open-Unmix, a high-
performance and open-source source separation model, by introducing self-attention.
Self-Attention is introduced to improve the performance of separation by exploiting
long-term internal dependencies when the noise is repeated. Open-Unmix[4] is a three-
layer bi-directional LSTM model that takes the spectrogram of the mixed sound source
as input and learns to predict the spectrogram of the target sound source for each in-
strument and vocal of the song. The model learns a mask to remove all sources except
the target source, and performs source separation by multiplying the input source by
the mask. Among open-source sound source separation software, it shows very high ac-
curacy in the separation results. In addition, we apply the model used for sound source
separation of music to the task of sound separation, which is to remove noise from noisy
speech information1, showing that sound source separation research can be applied to
various tasks.

1 https://github.com/seth814/open-unmix-pytorch
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2 System Description

In this section, we describe the source separation system proposed in this paper.

2.1 Input Data

In this study, we created a database consisting of speech and noise that can be adapted
to the input format of Open-Unmix, a source separation model for music. A mixture of
speech and noise was created, and the system was trained to separate them. For noise
data, we used the ESC-502 dataset. ESC-50 is a dataset of 50 classes and 2,000 files of
environmental sounds. ESC-50 is a dataset of 2,000 files of 50 classes of environmen-
tal sounds, including animal sounds, rain sounds, human coughs, clock alarms, engine
sounds, and other sounds without voices (words). Each file is 5 seconds long and has a
sampling rate of 44.1 kHz. It consists of audio data (.wav) and metadata (.csv), and the
metadata contains the file name, class (0-49), and class name.

For the audio data, we used the publicly available podcast3 data. We used the pod-
cast data because the speakers speak clearly and there is little noise. We used the data
of 10 broadcasts (95820 seconds).

The data set was pre-processed. First, since each sound source of ESC-50 is 5 sec-
onds long, we converted the podcast audio data into a wav file and divided it into 5-
second segments. Then, for each sound source, the data was divided into 80 % for
training data, 10 % for validation data, and 10 % for test data. Open-Unmix supports
data input in the form of source folders rather than track folders, and the data loader
loads random combinations of target and interferograms as input. The model then esti-
mates the mask of the target, and finally outputs the target.

2.2 Proposed Model

The proposed method consists of Open-Unmix and self-attention. These are described
by Pytorch4. The model structure is as follows (Fig. 1).

The input signal is first converted into a spectrogram by STFT. The input spectro-
gram is standardized using the mean and standard deviation of each frequency bin over
all frames. In addition, batch normalization is applied at several points in the model
to stabilize the training. When training with LSTM, the frequency and channel axes of
the input information are compressed before training, instead of using the original input
spectrogram resolution. This is expected to reduce redundancy and training time. Open-
Unmix is composed of three layers of BLSTM. After applying BLSTM, the signal is
decoded and returned to its original input dimension. The output is finally multiplied
by the mixture of sources as a mask is generated to separate the target sources. In order
to perform the separation to multiple sources, the model is trained simultaneously for

2 https://github.com/karolpiczak/ESC-50
3 http://podcasts.joerogan.net
4 https://pytorch.org/
5 https://github.com/sigsep/open-unmix-pytorch
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Fig. 1. Diagram of the Open-Unmix5with self-attention.

each specific target. In the case of this study, a model for noise extraction and a model
for speech extraction are trained simultaneously.

As shown in Fig. 1, we combine self-attention with the output of BLSTM to weight
which elements should be focused on during training. The input size to BLSTM is
(255,128,512), and the output is returned as a tuple, passing the first element, the hidden
layer vector. We concatenate the output of BLSTM and the information held by the skip
connection, and the size becomes (255,128,1024). Then, the weighting by self-attention
is added.

3 Evaluation Results And Comparisons

3.1 Experiment

We compare the speech separation accuracy of the proposed method with that of Open-
Unmix alone. For self-attention, we set the number of channels to be compressed in
the convolutional layer to 100 and the output size in the linear layer to 32. The other
parameters are batch size 128, window length 512 for STFT, hop count 160 for STFT
samples, and data format .wav. The other parameters in Open-Unmix are set by default.
SDR, ISR, and SAR were used as evaluation indices [1]. These indices were calculated
using the museval package6. The units are all expressed in dB, and the larger the value,
the higher the accuracy.

3.2 Results

Table 1 shows the results of the objective indices for the test data of the previous and
proposed methods. We evaluated the results for both the separated voice and noise.

6 https://github.com/sigsep/sigsep-mus-eval
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The following functions are used to measure performance: Source to Distortion Ratio
(SDR), Image to Spatial distortion (ISR), and Sources to Artifacts Ratio (SAR) [1][7].

Table 1. Comparison of previous and proposed methods. Evaluations were calculated for speech
and noise respectively.

Metric(dB) Open-Unmix Proposed method
SDR (voice) 6.83 7.46
SDR (noise) 8.43 8.59
ISR (voice) 10.24 8.97
ISR (noise) 12.55 12.86
SAR (voice) 6.38 6.53
SAR (noise) 8.92 9.02

All the noises in ESC-50 and the podcast were synthesized, and the evaluation index
of speech separation was calculated for each noise and represented using a box-and-
whisker diagram.

Fig. 2. SDR for all noises (Open-Unmix). Fig. 3. SDR for all noises (Proposed method).

3.3 Discussion

A t-test was conducted to determine if there was a significant difference in the eval-
uation of the results. According to Table 2, there was a significant difference in the
improvement of accuracy for both voice and noise in SDR, and a significant difference
in the improvement of accuracy for voice and noise in SAR. On the other hand, ISR
showed a decrease in accuracy in voice.

Since SDR is an overall evaluation value that includes all other evaluation metrics,
the improvement in SDR indicates that self-attention is useful for voice separation. On
the other hand, the accuracy of the ISR for voice has decreased. It is possible that the
weighting of self-attention was not done correctly, or that there was a problem in the
model.
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Table 2. t-test for evaluation measures.

SDR(voice) SDR(noise) ISR(voice) ISR(noise) SAR(voice) SAR(noise)
t-ratio −0.62 −1.89 10.35 0.65 1.33 0.1

degree of freedom 199 199 199 199 199 199
significance level 0.05 0.05 0.05 0.05 0.05 0.05

t-distribution 1.65 1.65 1.65 1.65 1.65 1.65
significance of test P < 0.05 P < 0.05 P > 0.05 P < 0.05 P < 0.05 P < 0.05

The value of SDR changes depending on the type of noise (Figs. 2, 3). This is due
to the fact that intermittent noises and noises that are not too loud tend to have higher
accuracy than continuous noises during 5 seconds. While none of the previous methods
exceed 35 dB, the proposed method exceeds it for three noises.

4 Conclusion

In this paper, we attempted to further improve the accuracy of the Open-Unmix model,
which has high performance in open source software, by introducing self-attention. In
addition, we demonstrated the versatility of this model for the source separation task by
using it not for the source separation task, which separates vocals and accompaniment
from a piece of music, but for the speech separation task, which separates each from a
mixture of voice and noise. The results of the t-test showed a significant difference.
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Abstract. Pierre Schaeffer’s typomorphology (1966) proposes seven criteria of
musical perception for the qualification of sound objects under reduced listen-
ing; these criteria form the basis of a theory (solfège) of musical objects fitted
to musical contexts where pitch is not the most relevant feature. We developed
a real-time setup that uses low-level audio descriptors to identify and classify
percussive sounds as bundles of features related to Schaefferian concepts. The
paper describes a segmentation method and the tools and strategies used for ad-
dressing three of these criteria: attack profiles (as genres of the criterion dynamic)
and mass (which closely relates to the criterion harmonic timbre). The examples
depict quantitative results and discuss their correlation with perceptual qualities.

Keywords: typomorphology; Pierre Schaeffer; percussion; audio descriptors

1 Introduction

In recent years, many papers have sought to bring the tools and procedures related to
audio descriptors and Music Information Retrieval closer to the theoretical and method-
ological contributions of Pierre Schaeffer. Such works seek to correlate Schaefferian
morphological descriptions and the quantitative data extracted through various tech-
niques of digital signal processing, aiming to automatically index sounds [1], associate
“subjective labels” and acoustic features [2, 3], or conjugate descriptors data and per-
ceptual criteria in analytical contexts by employing statistical methods [4], among other
approaches [5, 6].

In this paper, we aim to approximate the Schaefferian solfège criteria and low-
level audio descriptors by implementing real-time audio analysis processes using the
computer music language/environment Max1. In this study, we have chosen the uni-
verse of percussive sounds since their sonic qualities are represented and qualified in a
very rough manner when using the concepts and parameters of traditional music theory
(notes and durations). Bringing into account concepts like complex sound, mass profile,
grain, among others, we hope to develop a more efficient tool for the qualification of
these sounds to be used in interactive contexts. In this article, we analyze a limited but

1 https://cycling74.com/products/max
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varied selection of percussive sounds, and the results show the suitability of the chosen
descriptors for the qualification and differentiation tasks.

The text is organized as follows. Firstly we summarize the seven criteria of musical
perception as defined by Schaeffer. After that comes the description of the dataset and
procedures used in audio pre-processing and segmentation. A central section deals with
the chosen audio descriptors and their correlations with Schaefferian concepts. A set of
selected examples comes next. Finally, we present the next steps of the project.

2 Schaeffer’s Criteria of Musical Perception

In the sixth book of his Traité des Objets Musicaux (TOM), Pierre Schaeffer presents
one of the most remarkable contributions of his research: a proposal of a generalized
solfège, dedicated not only to the traditional musical notes, but also to any sound con-
sidered “potentially musical”. This solfège entails seven typomorphological criteria of
musical perception that have the purpose to guide the listening process that consciously
attempts to detach the sonic characteristics from any referential or causal events that
may generate sound objects themselves: a method that Schaeffer, borrowing the Husser-
lian concept of epoché, named reduced listening. In section 34.3, the TOM includes a
Summary Diagram (tableau général), offering an overview of the whole method, where
types, classes, genres, and species of sound objects are described according to seven cri-
teria –– mass, dynamic, harmonic timbre, melodic profile, mass profile, grain, and al-
lure [7, 8]2. The criteria help to locate the position and thickness (site/calibre) of sound
object attributes in the three-dimensional space of a perceptual field formed by pitches,
durations, and intensities.

In section 88 of the Guide des Objets Sonores [9], Michel Chion outlines the dis-
tinctive features of sound objects that each of the morphological criteria proposed by
Schaeffer aims to evaluate.

– The mass details how the sound occupies the pitch perceptive dimension.
– Harmonic timbre describes the “diffuse halos” and “related qualities” that seem to

be related to the mass and allow its qualification.
– Grain, in its turn, is related to the “micro-structure” of sound matter and is associ-

ated with rapid variations or reiterations of constituent sounds.
– While grain outlines the link between form and matter as one of the sustainment

criteria, allure expresses the dynamism (mechanical, living, or natural) of what
could be defined as a “generalized type of vibrato”.

– Dynamic expresses the evolution of a sound in the perceptive dimension of intensi-
ties.

– Melodic profile describes the general contour of a sound in the perceptive dimen-
sion of pitches, a sort of trajectory in the tessitura.

– Mass profile, on the other hand, describes the “internal” variations of a sound in this
same perceptive dimension: these changing shapes are responsible for “sculpting”
the mass, making it to be more or less thick or thin, having thus a more or less
complex or tonic quality, for instance [9].

2 See, particularly, pp. 584-587 of the original edition; pp. 464-467 of the English translation.



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

127

As a general method, reduced listening involves a conscious attitude that refrains
the habitual curiosity towards the sound sources and their meanings in favor of address-
ing intrinsic features of the sonic phenomena. While authors like Di Scipio [10] remark
that the concept of reduced listening is ideologically and technologically circumscribed,
ignoring the very audible traces of electroacoustic tools that enable us to focus on the
‘sound itself’, its relevance, since the Schaefferian seminal contributions, lies in the
fact that the project of a “generalized solfège” has been successful in providing a rich
theoretical framework that makes possible to describe different features, behaviors, and
qualities of sound objects according to morphological criteria and perceptual dimen-
sions.

Considering Pierre Schaeffer’s well-founded warnings regarding the differences be-
tween the study of sound objects using perceptual-sensory criteria, on the one hand, and
physical-acoustic analysis of audio signals, on the other, it is relevant to underline the
experimental nature of the present work. Thus, despite the differences between percep-
tual and signal-based evaluation, description, and categorization of sounds, our work
is motivated by a common trait of low-level audio descriptors and the Schaefferian
solfège: both focus on intrinsic qualities of sound phenomena, seeking to discriminate
particular characteristics based on certain criteria, dimensions, or parameters. Indeed,
Schaeffer himself, even warning to the differences between perceptual processes and
what signals can represent, also recognized the usefulness of real-time visualization of
signals using bathygraphs and sonagraphs. [7, 8] 3.

3 Selection of Sounds, Pre-processing and Segmentation

In our program, the expected inputs are audio streams delivered by microphones, pick-
ups, or mixers, featuring different background noise levels and dynamic ranges. In the
current phase, we have chosen to use a set of pre-recorded sounds. This procedure offers
not only variety but also repeatability, two relevant factors for building and improving
tools. The sound selection, depicted in Table 1, was based on Schaefferian types. These
recorded sounds function as live inputs to the setup4, which runs with a sampling fre-
quency of 48 kHz.

The sounds are segmented between onset and offset points. In some situations, a
new segmentation clue may occur before the offset; in these cases, this clue determines
the offset of the previous event and the beginning of the current one, characterized as
“slurred”. The detection of onsets and offsets occurs by comparing an RMS envelope
(expressed in dBFS) with two thresholds, 6 dB and 3 dB, respectively, above the back-
ground noise level. This envelope uses a very short window for its estimation — 256

3 In the pp. 556-557 of the English translation of the TOM [8]: “It is perhaps disconcerting to
see us, after so many warnings, recommending the use of the bathygraph and the Sonagraph
to describe a piece of music.(...) On the physical level the bathygraph and the Sonagraph give
two graphs of the signal in real time: its projection on the dynamic and the harmonic plane. Of
course, these lines are not very intelligible because perceptions of sound differ so much (by
anamorphosis) from the signal on the printout.”

4 The soundfiles used in this study are available in the following repository:
https://github.com/lapis-ufmg/2021_CMMR_arquivos
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Table 1. Selected sounds.

sound description sound description

tabla.gliss
single tabla stroke

with glissando
rattle single directional rattle shake

tomtom single tomtom stroke tamb.tremolo tambourine tremolo
whip single whip attack berimb.jete berimabau jete, multiple strokes

tamb.slap single tambourine hand slap berimb.vib
single berimbau stroke,

with vibrato
sdrum.drag snare drum drag, with snare pand.rim.frict pandeiro tremolo-like rim friction

sdrum.nosnare
single snare drum stroke,

without snare
sleighbells multiple sleighbells shakes

bassdrum single bassdrum stroke thunder.shake multiple thunder sheet shakes
cymbal single cymbal stroke rainstick rainstick tip
gong.tuned single tuned gong stroke timp.roll timpani roll
gong.untuned single untuned gong stroke whistle single whistle blow
guiro single directional guiro rub pand.skin.frict single pandeiro skin friction
ratchet single ratchet swing

vibes.bow single vibraphone key bow
cymbal.bow single cymbal bow

points and hop size of 64 —, which will be referred to as rms256:4. In order to obtain
more efficiency and precision, we implemented this curve with the Max [gen~] ob-
ject, which uses native audio signal processing routines. Its output is smoothed with a
low-pass filter (a single one pole filter, with a –6 dB per octave attenuation), and dif-
ferent cutoff frequencies are employed, depending on the purposes of its use. We use a
cutoff frequency of 4 Hz in the estimation of onsets, offsets, and attacks. In the latter
case, the audio stream may pass through a filter before the calculations. The estimation
of attack profiles and iterative grains uses this same signal with a cutoff frequency of 30
Hz. A control-rate version of this envelope builds the attack profile. Onsets and offsets
also function as gates for other processing tools in time and frequency domains. These
processes explore the data delivered by a rms2048:4 curve and by spectral peaks values
estimated by the [sigmund~] object [11], using the same window and hop size.

4 Perceptual Attributes and Algorithms

Due to text size restrictions, we will concentrate on a subset of Schaefferian perceptual
criteria (or sub-criteria) and their correlated audio tools, namely the attack profile, mass,
and harmonic timbre.

4.1 Attack Profile

The importance of the attack portion of sounds has been stressed clearly in the work of
Pierre Schaeffer, deserving special attention in the TOM and Solfège. At that time, he
complained that physical measurements were far from representing an accurate picture
of the perceived sonic dimensions. About the initial transient portion of sounds (ca. 50
ms), he observed that: “A more spectacular experiment involved asking a very good
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trumpet player to play a staccato with an accuracy appreciable to the ear: none of this
sound’s eight impulses gave an oscillogram similar to the others (fig. 5)” [8], (p. 164).

It is not our purpose to argue about how different oscillograms associate with sim-
ilar perceptions of the beginning of sounds. On the other hand, we intend to approach
the initial portion of sounds (ca. 400 ms) with a descriptor that allows for an association
between audio features and perceived qualities, using a tool similar to the “bathygraphic
traces” depicted by Schaeffer [7, 8]5. This approach is similar but not equal to the es-
timation of log-attack-times and attack slopes [12]. We prefer to analyze the entire
profile, which may surpass 300 ms, instead of stopping at the point usually named the
end of attack. For the same reason, this point will be called the attack first plateau. The
difference between the levels of the first plateau and the onset is named attack size, and
the time interval between them attack duration. The slope of the first plateau (FPSlope)
is the ratio between these two values.

The first plateau is estimated as the instant when the derivative of the low-pass fil-
tered audio-rate rms256:4 curve from the (possibly filtered) input audio stream crosses
(or comes near to) zero, just after having surpassed a predetermined positive threshold
(a sharpness parameter). A value of 200 ms is set as the default reattack threshold since
we prefer to consider multiple fast strokes (such as flans, drags, ricochets) as belonging
to the same profile. Depending on the settings (filtering and thresholds), this estimation
may not produce results for soft attacks6. We also prefer to consider some iterative sus-
tainments as a single object displaying allures, even when the distance between peaks
exceeds the reattack threshold. The onset of a slurred event also marks the offset of
the previous one and is defined as the instant when the already mentioned derivative
surpasses the given threshold.

The attack profiles depend on their context of production, mainly on the dynamic
level and duration (which is also related to excitation and sustainment types). Schaeffer
defines seven genres: abrupt, steep, soft, flat, gentle, sforzando, and nil. The first three
genres relate to different attack-resonance types; a sudden burst of energy characterizes
the flat profile; the gentle genre has no apparent attack; sforzando generally associates
with short sounds with a characteristic crescendo; nil points to the very progressive
emergency of a profile. For the sake of comparison, we have kept all the parameters,
except the background noise threshold, fixed for all sounds selected for the present
study. The first 300 points after the onset, corresponding to 400 ms, are plotted on
a user screen, and stored in a buffer, for further analysis. Figure 1 depicts the attack
profiles of nine sounds.

4.2 Mass / Harmonic Timbre

Schaeffer defines seven classes of mass: pure sound, tonic, tonic group, channeled,
nodal group, node, white noise. Pure and tonic sounds present a clear pitch, while tonic

5 See p. 533 of the original edition; p. 425 of the English translation.
6 These parameters (reattack time and sharpness) help to redefine the fluids limits between the

context (“whether the criteria are artificially put into a structure...”) and the contexture (“...or
naturally form a structure”) of percussive sounds in contexts with different segmentation clues.
The quotations are from p. 402 of the English translation [8].
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Fig. 1. Attack profiles and first plateau (red mark) of nine percussive sounds. The gray curve is a
rms256:4 low-pass filtered (4 Hz) envelope of the low-pass filtered input signal, and is used for
the estimation of the plateau. The blue curve is a rms256:4 low-pass filtered (30 Hz) envelope
of the non-filtered input signal, and is used for the qualification of the attack profile. Filters and
threshold parameters remained unchanged for all sounds.

groups are chord-like sounds. Node is a filtered noise occupying a definite spectral re-
gion, and nodal group a combination of nodes. Channeled sounds are an ambiguous
class between the pitched and unpitched sounds. Within percussion instruments, the
most common classes are tonic, channeled, node, and nodal group. However, the latter
occurs more like a combination of single nodes than as a single sound object. Harmonic
timbre is a complementary criterion to mass, being almost inseparable in some situa-
tions. In Schaeffer’s words: “Consequently we intend to use the two criteria of mass
and harmonic timbre in conjunction with each other, considering them rather as con-
necting vessels, with the exception of certain specific examples(...)” [8]7. These specific
examples are the pure and tonic sounds. Therefore, we have opted to use the same audio
descriptors for both criteria. Typical harmonic timbre attributes are expressed by terms
like full/hollow/narrow, rich/poor, and bright/matt. The last attribute pair may overlap
with the judgment of the spectral region occupied by the mass of a given sound.

Our strategy to deal with the main classes of mass, and the associated harmonic tim-
bres in the percussive realm, relies on the analysis of spectral peaks and (monophonic)
pitches estimated by the [sigmund~] object. As we are presently not interested in iso-
lating individual notes inside chords, these two outputs are sufficient for our purposes.
Since our context does not presuppose the existence of a harmonic series of spectral
peaks, we can not use traditional descriptors as noisiness, inharmonicity, odd-to-even
harmonic ratio, tristimulus, among others.

The following descriptors use the spectral peaks (up to 20) estimated for each anal-
ysis frame and the energy equivalence given by Parseval’s theorem. Their output is a

7 Quoted from p. 412.
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curve with a refresh rate of 10.67 ms. Percentile 50 (pct50) and percentile 80 (pct80)
are the number of spectral peaks needed to obtain 50% (-3dB) and 80% (-1dB) of the
total energy present in the signal. For sounds with a broad spectral distribution, 20 peaks
may not reach the chosen percentiles; in these cases, the output will be 20 peaks, and
further information is to be delivered by the next descriptor. The percentage of sound
energy represented by up to 20 peaks (20P/total) is calculated for each frame and ex-
pressed in values between 0 and 1. The frequency of the most prominent peak (MPP)
in each frame is expressed in Midicents8. The object [sigmund~] outputs a value
in Midicents for the pitched frames, and the value -1500 for unpitched frames. Our
descriptor outputs a scalar (percentage of unpitched to total frames: unpitched/total)
and a curve with all values. In this curve, the unpitched values are represented by the
number 1. The estimation of the intrinsic dissonance uses the algorithm developed by
Sethares [13].

The spectral centroid (SC), or the center of gravity of a spectrum, is estimated with
a [gen~] routine delivered with the Max program since its version 6. Instead of using
a nominal value in Hz, we use values in Midicents, which define a scale ranging from
15.5 to 155 in the audible range. The difference between the lowest and highest peak
frequencies (∆ peaks) is also expressed in Midicents. The spectral region is estimated
from the contribution of each peak to different spectral ranges. The first three octaves
(20–160 Hz) define the low range, the four intermediate octaves (160–2,560 Hz) the
medium range, and the last three octaves (2,560–20,000 Hz) the high range. If none
of these ranges carry 40% or more of the total energy, the sound frame is classified as
wideband, labeled as (7). Otherwise, any range with more than 40% of the total energy
contributes to qualify one the six spectral combinations: (1) Low, (2) Low/Medium, (3)
Medium, (4) Low/High, (5) Medium/High, (6) High.

4.3 Time Series Statistics

Most of the descriptors detailed above are represented by time series, which are sub-
jected to simple statistical analysis just after the offset. Our implementation adapts the
algorithms given in [12], and we have chosen the following scalar descriptors: mean
value and standard deviation; temporal centroid and spread (normalized by the total
duration); skewness; kurtosis; crest; flatness. These values will support the correlations
with the Schaefferian perceptual attributes.

5 Examples

For each live input sound, our program generates real-time curves (or markers) for all
descriptors and calculates the scalar values described in section 4.3. The results of the
analysis of the attack profiles shown in Figure 1 appear in Table 2. We will focus firstly
on the sounds produced by one single stroke (percussion-resonance type). Perceptually,
the whip sound presents an abrupt profile. This attribute correlates with its short dura-
tion, low values for temporal centroid and spread, a positive skewness, and a high crest.

8 Midicent is the unit of a logarithmic scale for frequencies, in which the value 69 represents
440 Hz (note A4), and each integer step is an equal-tempered semitone.
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The tomtom stroke presents a steep profile. Although it has a temporal centroid similar
to the whip, its spread is much larger, and the skewness and crest are less pronounced.
The profile of the tambourine slap lies in between these two sounds. The tuned gong
stroke presents a soft profile; in this case, we have a “reinforcement of the resonator”. A
longer duration, a slightly positive skewness, and a high value for flatness correspond to
this attribute. The rattle profile, produced by a shake, is perceived as gentle since an ini-
tial shock is absent. The sound production mixes iterative and continuous aspects. The
negative skewness, a small crest, and medium flatness point to this attribute. There are
three sounds with a clear iterative or granular profile: the guiro rub, the berimbau jeté,
and the drag on a snare drum. The parameters of the two latter are halfway between the
steep and the soft profiles; in them, a new stroke prolongs the short resonance. On the
other hand, the guiro has a sforzando profile: a high temporal centroid, a considerable
negative skewness, a high crest. We believe that the iterative character could integrate
the basic profiles as a second-order qualifier. Finally, we have the long thunder shake,
whose profile approaches the genre nil: its medium temporal centroid, a low value for
crest, and a high value for flatness corroborate this qualification. In this case, the dy-
namic level (the average value of the entire object) indicates that a marked crescendo
will happen during its course. In general, long sounds will rely less on their attack por-
tion for their characterization. It seems to us that the use of the slope of the first plateau
(which may vary significantly according to specific parameter settings) and kurtosis
could be more significant with more homogenous sounds. In the present selection, they
are not as meaningful as the other parameters.

Table 2. Attack parameters for nine selected percussive sounds (the same from Figure 1), plus
total duration and dynamic level.

sound FPSlope
(dB/ms)

temp.
centroid

temp.
spread skewness kurtosis crest flatness dur

(ms)
DL

(dB)
whip 0.42 0.24 0.26 1.25 2.87 6.08 0.30 396 −46

tamb.slap 0.85 0.22 0.74 0.31 0.25 4.07 0.42 461 −33.5

tomtom 1.03 0.24 1.18 0.17 0.09 3.60 0.43 487 −28.5

sdrum.drag 0.33 0.35 1.06 0.08 0.10 4.28 0.61 616 −31.8

guiro 0.63 0.72 0.39 -0.66 1.36 11.09 0.67 631 −42

rattle 0.13 0.67 0.67 -0.21 0.28 2.18 0.67 1151 −42

berimb.jete 0.81 0.35 0.53 0.33 0.66 4.77 0.60 2019 −55.6

gong.tuned 0.24 0.42 1.13 0.08 0.11 1.96 0.92 9219 −42.6

thunder.shake 0.18 0.53 0.20 -0.19 3.82 2.80 0.86 15541 −33

The discussion about mass and harmonic timbre relies on data displayed in Tables
3 and 4. A significant presence of pitched frames points to a tonic sound; the opposite
indicates a node or a channeled sound. In addition, the concentration of energy in a few
spectral components helps differentiating between tonic and channeled sounds on one
side and nodal sounds on the other. The combination of these two descriptors can dis-
criminate between tonic (bass drum, whistle, friction of a tambourine skin, and tabla),
channeled (tomtom, tuned gong, and snare-drum without snares), and nodal (cymbal,
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guiro, ratched, and rattle, among other) sounds. The stability of the most prominent peak
may also favor tonic and channeled sounds, but one must be careful with the presence
of melodic profiles, as in the case of the tabla sample. Although intrinsic dissonance
values may also point to tonic sounds, this is not a univocal association since spectral
peaks not presenting a simple harmonic ratio only increment this value if they are close
enough in frequency (see details in [13]). The interpretation of spectral centroid (and
region) values is straightforward; however, a high value for the standard deviation indi-
cates the presence of some profile (glissando, undulation, filtering, etc.). We can analyze
the shape of these profiles with tools similar to those used for the attack profiles.

In addition to the symbiotic relation between mass and timbre, Schaeffer states that
“there is no classified index for perceptions of harmonic timbre“ (TOM, p. 420). In the
present case, we try to approximate the perceptive attributes full/hollow/narrow with the
descriptors ∆ peaks, pct50, pct80, and region (helped by the intrinsic dissonance), and
the opposition rich/poor with the values estimated for pct80 and 20P/total. For instance,
observing different sounds classified in the medium region, it is possible to split them
between hollow (bass drum, tomtom) and narrow (whistle, rattle) according to these
parameters.

Table 3. Mass and harmonic timbre parameters (1) for 10 selected percussive sounds.

sound dur pct50 pct80 20P/total
(ratio)

unpitched/total
(ratio)

tabla.gliss 227 1.3± 0.5 6.6± 8.5 0.85± 0.12 0.24
tomtom 487 1± 0.2 1.96± 3.1 0.96± 0.1 0.38
sdrum.nosnare 560 1.1± 0.4 2.4± 3.7 0.96± 0.1 0.32
ratchet 753 19.8± 0.6 20± 0 0.42± 0.1 0.86
rattle 1103 8.4± 2.2 19.7± 1.3. 0.71± 0.1 1.0
pand.skin.frict 1915 1± 0.2 1.5± 2.1 0.98± 0 0.07
tamb.tremolo 1365 12.5± 4.2 20± 0 0.62± 0.1 0.77
whistle 1463 1.4± 0.6 5.2± 6 0.89± 0.1 0.13
bassdrum 3671 1.1± 1 1.2± 1.5 0.98± 0.1 0.04
gong.tuned 9219 1.3± 0.8 2.2± 1.6 0.98± 0.05 0.42

6 Final remarks

The results obtained so far have demonstrated that our setup can qualify and differen-
tiate diverse types of percussive sounds with a good approximation to the Schaefferian
criteria. We believe that we have shown the importance of attack profiles for percussive
sounds and the pertinence of the implemented tools for the qualification of mass and
harmonic timbre. The next planned steps are the work with performers in real-time in-
teractive contexts (when the pandemic allows), the choice of the most efficient descrip-
tors for each intended perceptive feature, the training of a machine learning algorithm,
and the development of interactive musical works.
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Table 4. Mass and harmonic timbre parameters (2) for 10 selected percussive sounds.

sound diss MPP
(mc)

∆ peaks
(mc)

SC
(mc) region

tabla.gliss 37± 22.5 46.2± 10.4 69.9± 19.3 54± 7.6 1.8± 1

tomtom 46.2± 17.5 55.8± 0.2 64.9± 15.3 60.8± 10.2 3

sdrum.nosnare 45.3± 21.9 61.2± 7.7 59.4± 15.6 65.5± 13.3 3

ratchet 122.5± 30.9 97.6± 9.5 30.7± 4.5 110.2± 3.6 6.5± 1.3

rattle 138.8± 42.6 95.5± 1.9 17.5± 9.1 101.2± 2.7 3

pand.skin.frict 43.2± 30.5 48± 1.6 70.2± 6.7 51.7± 6.7 1

tamb.tremolo 235.9± 91.7 111.9± 23.8 35.5± 31.7 118.4± 2.7 6± 0.6

whistle 132.8± 29.5 98.2± 0.4 31.9± 13.3 98.4± 2.4 3

bassdrum 22.6± 23 27.8± 3.8 99.3± 21.6 30.5± 8.7 1± 0.3

gong.tuned 24.2± 17.8 61± 2.9 76.4± 31 68.2± 7.6 3± 0.2
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Abstract. A sound mass is a specific state of the musical texture corresponding
to a large number of sound events concentrated within a short time and/or fre-
quency interval. Conceptually, it is associated with the work of György Ligeti,
Krzysztof Penderecki, and Iannis Xenakis, among others. Recent studies have in-
vestigated sound masses via perceptual models, such as Gestalt models of percep-
tion and auditory scene analysis, and also from a more acoustic and psychoacous-
tic perspective obtained through audio recordings. The main goal of this paper is
to propose a methodology for the musical analysis of sound mass music through
audio recordings. We apply this method in the analysis of a performance of the
first movement of Ligeti’s Ten Pieces for Wind Quintet (1968), and explore rela-
tionships between the obtained audio descriptors and Ligeti’s concepts of timbre
of movement and permeability, in order to reveal Ligeti’s strategies when dealing
with musical texture and sound masses.

Keywords: sound mass music, musical analysis, audio descriptors, psychoa-
coustics

1 Introduction

This paper introduces a computer aided musical analysis methodology anchored on au-
dio descriptors. Specifically, psychoacoustic models are applied to study sound mass
composition. Sound mass composition emerges in the context of discussions about per-
ception and 20th century serial music [19]. Noticeably, these discussions were part of
the Darmstädter Ferienkurse, where composers attended classes and lectures on psy-
choacoustics, phonetics, information theory, and sound synthesis [5]. Some well-known
examples of sound mass compositions are the large number of attacks in Ligeti’s Con-
tinuum (1968), the micropolyphony and cluster techniques in his Chamber Concerto
(1961), and the mass created by glissandi and extended techniques of the string orches-
tra in Xenakis’ Aroura (1971).

The central idea in sound mass composition is to emphasize perceptual features of
sound, by exploring the continuum of time and frequency domains to produce sound
� Micael Antunes is supported by FAPESP Grant 2019/09734-3. Jônatas Manzolli is supported

by CNPq Grant 304431/2018-4 and 429620/2018-7. Marcelo Queiroz is supported by CNPq
Grant 307389/2019-7.
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textures with a high level of fusion and inner movement. Perception of sound masses
is often linked with the limits of sound integration by the ear [19] and microtime per-
ception [3]. Sound mass music is also associated with Huron’s perceptual principles
of minimum masking, pitch proximity and limited density, which are anchored in the
critical bandwidth psychoacoustic model [17, 26].

Previous works have studied Ligeti’s sound mass composition from a perceptual
perspective, mainly through the symbolic analysis of the score. Clendinning explored
such a perceptual approach in the study of Ligeti’s compositional techniques such as
pattern-meccanico [10] and micropolyphony [9]. Cambouropoulos [8] used Gestalt the-
ory to investigate links between Ligeti’s techniques and their perceptual outcomes, an
approach already explored by Ferraz [14]. More recently, Douglas et al. [12] investi-
gated Continuum (1968) within the context of Bregman’s auditory scene analysis [6].

Methodologies anchored in audio descriptors with a psychoacoustic approach,
which emerged in the context of computational and systematic musicology [23, 36, 21],
have also been used to study Ligeti’s works [21, 2, 1]. In this paper, we propose a
methodology for musical analysis [36] focused on perceptual concepts that motivate
sound mass music composition, associating them with descriptors derived from au-
dio recordings. Specifically, we study Ligeti’s viewpoint on sound mass composition
through the concept of timbre of movement [19], associating it with loudness [13] and
roughness [31]. Due to the correlation between spectral information and the perception
of pitches and individual voices [17], we also investigate the use of spectral entropy [25]
and spectral irregularity [7], associating them with Ligeti’s concept of permeability [19,
2, 1, 3]. We present an musical analysis of the first movement of Ligeti’s Ten Pieces for
Wind Quintet (1968), using score-based information alongside the audio signal of a
particular performance of this piece. We also derive representations based on audio de-
scriptors that allow us to discuss Ligeti’s compositional strategies and their perceptual
aspects, as well as the formal development of the piece from the viewpoints of timbre
of movement and permeability.

In Section 2, we lay out the theoretical background for this study, starting with
an exposition of the concepts of timbre of movement and permeability. Then, we give
an overview of the first movement of the Ten Pieces for Wind Quintet, followed by a
review of the audio descriptors used in this work. In Section 3, we outline the analytical
methodology proposed, and in Section 4 we present and discuss the results of our study.
Finally, in Section 5, we present our conclusions.

2 Theoretical background

2.1 Ligeti’s concepts of Timbre of Movement and Permeability

Two relevant György Ligeti’s concepts associated with sound mass music composition
are timbre of movement and permeability.

The concept of timbre of movement3 refers to the achievement of fusion in musical
texture by mixing a large number of sound events [19, p. 169]. Ligeti associates this

3 In the original, Ligeti uses timbre du mouvement in French and Bewegungsfarbe in Ger-
man [19, p. 169].
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concept with his collaboration with Gottfried Michael Koenig in the electronic studio
of the Westdeutscher Rundfunk (WDR) in Cologne [19]. To him, the most meaningful
knowledge acquired in the studio was the observation that sound samples or synthesis
components merge into a single texture when the number of sounds surpasses a certain
threshold of our perception. This occurs when our auditory system can no longer dis-
cern the individual components of a musical texture, leading our attention to the global
features and inner movements of sound masses [19, p. 169]. Ligeti used this concept
of timbre of movement in his instrumental compositions with the micropoliphony tech-
nique [9], which allows achieving dense textures by overlapping a large number of
melodies with short notes.

The concept of permeability refers to a state in which we are unable to distinguish
pitches and individual voices. According to Ligeti: “The loss of sensitivity to intervals
is at the source of a state that could be called permeability” [19, p. 123]. This concept
is mainly associated with the use of tone clusters in his works, such as Lux Aeterna
(1966). According to Ligeti, the tone cluster “is somewhere between sound and noise
and consists of several voices stratified and interwoven in semitones, which thereby give
up their individuality and become completely dissolved into the resultant overriding
complex” [20, p. 165].

2.2 First movement of the Ten Pieces for Wind Quintet

Ten Pieces for Wind Quintet was composed in 1968, and dedicated to the Wind Quintet
of the Royal Stockholm Philharmonic Orchestra. Each movement was conceived as a
micro concerto with tutti odd movements and solo even movements, each solo being
dedicated to one of the performers [33]. We choose as analytical corpus, for all feature
extraction and section division, the version of the piece performed by London Winds in
the album Ligeti Edition 7: Chamber Music, recorded in 1998.

Vitale [33] presents a thorough score-based analysis of this work, and highlights
the gradual processes appearing in the piece, based on micropolyphonic strategies to
generate the musical texture, where the musical material is articulated with slow modi-
fications in pitch, timbre, density, and rhythm [33, p. 2]. Using as criteria pitch register
and dynamics, this author proposes a division of the score of the first movement of the
Ten Pieces for Wind Quintet (1968) in two main sections (Section 1: measures 1 - 16;
Section 2: measures 16 - 22) followed by an appendix (measures 22 - 25). This cor-
responds respectively to the following time segments in the London Winds recording:
0:00.000 - 1:32.367 (Section 1), 1:32.367 - 1:58.390 (Section 2), 1:58.390 - 2:17.048
(Appendix).

2.3 Audio descriptors

The use of audio descriptors in the context of musical analysis is a multidisciplinary
task [36] which admits a multiplicity of approaches depending on the context in which
it is applied [21, 23, 36]. In this work, we design the analytical methodology anchored
in audio descriptors for two main reasons: 1. audio descriptors provide a perspective
(in our case, a perceptual perspective) on the musical sound data, allowing a better
understanding of the musical composition [23]; 2. graphical representations of audio
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descriptors guide the listening throughout the analysis and facilitates the observation of
related perceptual concepts [11]. As detailed in Section 3, we associate the concepts of
timbre of movement and permeability with four audio descriptors: loudness, roughness,
spectral irregularity and spectral entropy.

Loudness - Loudness is a psychoacoustic measure of sound intensity, usually as-
sociated with the perception of dynamics [3] in musical analysis. The total loudness
of a time frame (segment of an audio signal) is based on Zwicker’s critical bandwidth
model [37, 7]. The specific loudness of each Bark4 band can be computed by a simpli-
fication of the original equation [27] as

Loudness =
N∑

z=1

E(z)0.23,

where E(z) is the energy in the z-th bark band for the time frame considered.
Roughness - According to Vassilakis [31], roughness is a perceptual feature re-

lated with the sense of very fast amplitude variations in the sound and it is partially
conditioned by both the sound stimulus and the properties of the basilar membrane.
The roughness value of a time frame is based on an approximation, proposed in [30],
of the Plomp & Levelt experimental dissonance curve5 [28]. For complex sounds, the
roughness value can be computed using a formulation by Vassilakis, which embodies
the physical and psychoacoustic mechanisms involved in its perception, as

Roughness =
N∑
i=1

N∑
j=i

(ai ∗ aj)0.1

2

(
2aj

ai + aj

)3.11(
e

0.84|fj−fi|
0.0207fi+18.96 − e

1.38|fj−fi|
0.0207fi+18.96

)
,

where fi is the i-th partial of the sound and ai its corresponding amplitude.
Spectral Irregularity - The spectral irregularity feature used in this work was pro-

posed by Krimphoff et al. [18] as a measure of the noise content of the spectrum [7, p.
60]. It is usually computed for each time frame in the magnitude spectrum as

Irregularity =
N−1∑
k=2

∣∣∣∣ak − ak−1 + ak + ak+1

3

∣∣∣∣ ,

where ak is the value in the k-th magnitude coefficient and N is the total number of
frequency bins in the spectrum.

A low irregularity value denotes a spectrum whose energy is concentrated in few
frequency bins, associated with distinguishable components in the sound. In contrast, a
high irregularity value implies a more regular energy distribution across all frequencies,
associated with a more noisy content [7].

Spectral Entropy - Spectral entropy is an audio feature used for estimating signal
information and complexity in the Time-Frequency Plane [15]. Higher entropy values
are usually associated with higher spectral activity along all frequencies, and lower
values are related to a concentration of spectral energy on few components.

4 Bark is the unit of Zwicker’s critical bandwidth model [37].
5 For a full revision on roughness curves, see [31].
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The Spectral Entropy descriptor is derived from Shannon’s information theory equa-
tion through an analogy between signal energy densities and probability densities [34],
as

Entropy = −
N∑

k=1

P (Ek) ln(P (Ek)),

where P (Ek) denotes the relative frequency of the energy present in the k-th bin.

3 Methodology

Sound mass music, as already pointed, is intrinsically related to the perceptual outcome
of the musical events [26, 12, 3]. Therefore, any musical analysis focused only on the
score would not provide all relevant information for the understanding of sound mass
features [3]. It is our aim to devise an appropriate approach to sound mass music analy-
sis, based on information extracted from a musical performance through derived audio
features. In order to do that, we propose a methodology for sound mass music analysis
using audio descriptors and psychoacoustic features associated with Ligeti’s musical
concepts, aligned with score-based information.

The concept of timbre of movement is associated with the dynamic perception of the
global behavior of musical texture and its microtime manifestation [29, 1]. The loudness
descriptor is used as a measure for global perceptual dynamics [3] and the roughness
descriptor was used to describe the microtime behavior of sound masses [1, 31].

According to the principles of minimum masking and limited density [17], the higher
the level of spectral information in the auditory nerves, the lower our ability to perceive
musical pitches and intervals. Therefore, the concept of permeability is represented by
the textural information level of the sound mass, associated with spectral entropy [4],
and the noise content, associated with spectral irregularity [7].

Based on the above concepts and their interrelationships, the analysis was conducted
in 3 steps: 1. Manual segmentation of the audio signal according to the score, as de-
scribed in Section 2.2; 2. Computation of the selected time-varying audio descriptors
(Section 2.3), their corresponding graphical representations, mean and standard devi-
ation values, as well as scatter plots to illustrate their correlations; 3. Musicological
(human conducted) analysis of the piece to establish the relationships between musical
content of the different sections and the obtained descriptors values.

Feature extraction was done using Python6 and the Jupyter7 environment. Loudness,
irregularity and entropy were computed from the magnitude spectrogram obtained us-
ing Librosa [24], with a window size of 4096 samples and hop length of 1024 samples.
The roughness descriptor was obtained from the reassigned spectrogram [16] (with the
same parameters described above), as it depends on precise frequency and amplitude
values. All the code used to extract and plot the audio features is available at a Gitlab
repository8.

6 https://www.python.org/
7 https://jupyter.org/
8 https://gitlab.com/Feulo/ligetis-wind-quintet-analysis
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4 Results and Discussion

Figure 1 corresponds to the graphical representations of the descriptors obtained from
the audio analysis as functions of time. Each different color represents one of the three
sections of the score: blue is the first section, orange the second section and green the
appendix. Mean and standard deviation values for each descriptor and section are pre-
sented in Table 1. The analysis was conducted in 2 stages: first we explore the charac-
teristics associated with timbre of movement, followed by the behavior associated with
permeability.

Timbre of movement - According to the methodology proposed (Section 3), the
psychoacoustic descriptors of loudness and roughness are associated with the concept
of timbre of movement. Each section of the piece displays a different behavior in terms
of this concept.

The first section displays a somewhat regular fluctuation of loudness values (blue
line in the upper left corner of Figure 1). Within the same section, roughness (blue
line in the upper right corner of Figure 1) displays low values with low variation. The
corresponding statistics can be seen in Table 1.

In evident contrast with the first section, the second section of the piece displays the
highest values of loudness. We highlight that, although the standard deviation values
for these two sections are not very different, by inspection of the loudness curve, we
can see that the first section has an oscillatory behavior while the second section dis-
plays an ascending pattern. Also, in the second section we observe the highest values of
roughness with a complex oscillatory pattern, with spikes that go upwards towards the
end of this section. Finally, the appendix presents low values and low variation for both
loudness and roughness.

Section Loudness Roughness Irregularity Entropy
1 41.87± 14.49 9.96± 5.86 63.54± 40.72 0.42± 0.13
2 66.36± 12.52 103.12± 62.44 171.63± 58.37 0.74± 0.15
3 13.36± 5.29 0.55± 0.56 9.98± 6.58 0.10± 0.03

Table 1. Mean and standard deviation values for loudness and roughness on each section.

Permeability - Ligeti’s concept of permeability is linked to the audio descriptors
of spectral irregularity and spectral entropy. By observing the two curves at the lower
half of Figure 1, we can also observe a distinct profile within each one of the sections
of the piece.

In the first section, a regular fluctuation of the values is observed in both descriptors,
but entropy displays a lower range of variation relative to the mean (σ/µ = 0.64 for
irregularity and σ/µ = 0.31 for entropy, according to the values in Table 1). In the sec-
ond section, we can observe an ascending pattern in both features, similarly to what was
observed for loudness and roughness, with increasing spikes in the spectral entropy pro-
file. The same observation can be made here for the relative variation of both features,
with σ/µ = 0.34 for irregularity and σ/µ = 0.20 for entropy. Finally, the appendix
displays once again the lowest values in both descriptors, as observed with loudness
and roughness, with smaller relative entropy variation (σ/µ = 0.30) with respect to
irregularity (σ/µ = 0.66).
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Fig. 1. Roughness (upper left), Loudness (upper right), Spectral Irregularity (lower left) and Spec-
tral Entropy (lower right) for the 3 sections of the piece.

By observing all descriptors taken together, we see that the three sections of the
piece have very different behaviors from the perspective of their perceptual features.
The psychoacoustic difference between the sections is illustrated in the first plot of
Figure 2, which represents the relationship between loudness and roughness, and in the
correspondence between spectral irregularity and spectral entropy, shown in the second
plot of Figure 2. In both graphs, the spatial placement of the three section clusters, as
well as their geometrical arrangement, make the exploration of timbre of movement
and permeability relatively explicit, allowing us to observe a link between the formal
division of the composition and the different perceptual feature aspects of the sound
material.

Section 1 has a focus on the global behavior of the musical texture in terms of tim-
bre of movement, with a high variation of permeability. Section 2 emphasizes timbre of
movement with a focus on the microtime behavior, while at the same time reaching the
highest levels of permeability. The appendix displays a low level of activity in terms of
both timbre of movement and permeability. It is interesting to observe that, with respect
to the first section, we see the blue cluster lying horizontally on the scatter plot, where
the large variations in loudness emphasize the global dynamic perception. In contrast,
the second section (orange) corresponds to a highly scattered cluster in both roughness
and loudness axes, but concentrating on high values of loudness, thus bringing the mi-
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crotime behavior (variation of roughness) to the forefront. In terms of permeability, we

Fig. 2. Scatter plot with the loudness (x-axis) and roughness (y-axis) values (left). Scatter plot
with the spectral irregularity (x-axis) and spectral entropy (y-axis) values (right)

can observe in Figure 2 that the spectral irregularity and spectral entropy fluctuations
in all sections are highly correlated, producing a log-like, quasi-diagonal shape in the
scatter plot, which correspond to constant changes of pitch perception in the musical
texture. This might be associated with the harmonic technique of blurring [8, p. 122],
used by Ligeti to manipulate the musical texture. Especially in the second section (or-
ange), the higher values of loudness and the large variation of the spectral descriptors
obliterate the perception of individual events, turning our attention to the mass behavior
of the composition. Finally, it is interesting to notice that the low level of all descriptors
in the third part (green) could be the reason why Vitale [33] described this section as an
appendix of the piece.

5 Conclusion

In this paper we presented a methodology for the musical analysis of sound mass com-
positions, based on audio descriptors associated with Ligeti’s concepts of timbre of
movement and permeability. In terms of the musicological interest in audio analysis
techniques focused on sound mass composition, the proposed method reinforces the
idea that the perceptual features associated with the performance of a musical work
bring important elements that help understanding the formal development of a work,
without reducing the importance of symbolic analyses based on the musical score.
By analyzing the psychoacoustic features of each section of this particular piece, we
may argue that the most important perceptual characteristics of the work do not depend
heavily on specific choice of pitches, rhythms or harmonies, but are highly anchored
on the perceptual qualities of the sound masses. Also, audio descriptors could expand
the gradual process approach [32], enriching the symbolic analysis with performative
characteristics of the piece.

Future work may focus on investigating other timbre-related psychoacoustic de-
scriptors in the context of the proposed analysis, to verify whether they contribute to
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a better understanding of the perception of similarity of sound masses [22]. The study
of other audio descriptors in the context of sound mass music could also foment ap-
plications in the field of creative processes, particularly in computer-aided composition
and musical modeling. Exploration of perceptual features of a musical work through
comparative analysis of different recordings of the same piece is also an interesting av-
enue for future work. It would be useful to investigate how the interpretative choices
in different performances could reveal the invariant properties of a musical work [35],
as expressed in the score. Finally, musical analysis with audio descriptors might help
in empirical studies with musical excerpts [12], offering exploratory ways to represent
perception attributes of non-expert listeners.
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3. Antunes, M., Rossetti, D., Manzolli, J.: Emerging structures within micro-time of Ligeti’s
Continuum (pre-print). In: Proceedings of the 2021 International Computer Music Confer-
ence. Santiago, Chile (2021)

4. Baraniuk, R.G., Flandrin, P., Janssen, A.J., Michel, O.J.: Measuring time-frequency infor-
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Unsupervised method for Implementing
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Abstract. We propose an implementation method for an implication-realization
(I-R) model analyzer that is based on note duration, beat structure, and pitch
transition. The proposed method involves two procedures, i.e., symbol-start note
estimation based on note duration, beat structure, and pitch transition and symbol
assignment by introducing a method for recurrently determining small and large
intervals in an I-R model analyzer. With the Narmour’s manual I-R analysis, our
methof had an F measure of 0.86 symbol-start note estimation.

Keywords: Implication Realization Model, Music theory, Music cognition

1 Introduction

We propose an implementation method for an implication-realization (I-R) model [2],[3]
analyzer that is based on note duration, beat structure, and pitch transition. I-R analy-
sis classifies the relationship between adjacent notes in accordance with how implica-
tions are satisfied or denied. The method for determining these relationships is based
on Gestalt theory. In Gestalt theory, the perceptual elements are grouped and recog-
nized. Narmour claims that there is a similar principle in the perception of melody. The
smallest unit of a group by I-R analysis is three notes, which are assigned symbols in
accordance with their characteristics. For example, the symbol P (process) is assigned
to a sequence of notes that are implicated to be heard at the same interval in the same
direction. Even when the same implication occurs, the symbol IP (intervallic process) is
assigned when only the implication of interval is satisfied, and the symbol VP (registral
process) is assigned when only the implication of direction is satisfied. Thus, in I-R
analysis, symbols are assigned in terms of whether the melodic expectation is satisfied
or denied concerning interval or direction.

I-R analysis involves two procedures. First, to obtain I-R analysis results, it is neces-
sary to estimate the I-R symbol-start note. This is an operation to discover the cognitive
boundary in the melody. According to Narmour, the clue to estimating the symbol-
start note is the ”closure”. A closure is a note at which no implication arises from the
sequence of notes occurring or where the implication is weakened. In other words, a
closure is an event that triggers a grouping boundary. Specifically, it refers to a change
in pitch interval, direction, or note value or the occurrence of a strong beat, etc. I-R
analysis is conducted for triplets starting from those boundaries.
⋆ Please place acknowledgement here.
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Second, the I-R symbols are assigned to a sequence of notes that is longer than
three notes, starting with the note estimated in the first procedure. Symbols are as-
signed mainly on the basis of two principles, principle of intervallic difference (PID)
and principle of registral direction (PRD). The PRD states that small (five seminotes
or less) intervals imply an interval in the same direction, and large (seven seminotes
or more) intervals imply an interval in the registral direction. The PID states that small
intervals imply a similarly-sized (plus or minus two seminotes) interval, and large in-
tervals imply a small interval. On the basis of these principles, three particular notes are
assigned one of eight symbols. By completing these two procedures, we can obtain the
results of I-R analysis.

The purpose of this study was to develop an implementation method for an I-R
model analyzer and quantitatively evaluate the results of the analysis. Although several
methods have been proposed to implement an I-R model analyzer, there have not been
studies that have quantitatively evaluated the accuracy of these methods. Grachten et al.
proposed an implementation method for an I-R model analyzer using decision trees [4],
and Yazawa et al. proposed one using extended I-R symbols [8], but to evaluate these
methods, they used the performance of melodic similarity with the analysis results as
features.

Because the performance of these methods are not known. Therefore, the usefulness
of the I-R analysis results in the Music information retrieval (MIR) field is not clear. In
this study, we evaluated the performance of our proposed method by comparing it with
the Narmour’s manual analysis.

2 Methodology

The flow of our method is as follows (Figure 1). First, we estimate the symbol-start
note. This consists of two steps: closure estimation (Section 2.1, 2.2) and determining
the order of symbol assignment (Section 2.3, 2.4, 2.5). Second, after the symbol-start
note is estimated, we assign it a symbol (Section 2.6, 2.7).

9

   

IOI

Closure

9

   
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Transition probability of triplet
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   

1 2 3
1 3 42 5
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2
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1 �

9

   

Symbol-start note estimation

Closure estimation

Symbol assignment

Determining order of symbol assignment

Fig. 1. Flow of proposed method
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Fig. 2. I-R analysis by Narmour. (a) W. A. Mozart: Piano Concerto No. 19 in F Major, Kv.459,
3rd mov., (b) L. v. Beethoven: Piano Sonata op.14-2, 3rd mov..

2.1 Closure

We first explain a closure to estimate the starting note of the symbol. We give examples
of the I-R analysis by Narmour (Figure 2) to explain the relationship between a closure
and symbol-start note. In the example in Figure 2 (a), the note considered to be the
closure is the first note of the third measure, i.e., ”la,” which has a strong beat and
changing note value. In this case, the closure ”la” is the end of symbol R, which starts
in the first measure, and the beginning of symbol P, which starts in the third measure.

In the example in Figure 2(b), the first and fourth notes of the first measure, third
note of the second measure, and first note of the third measure are considered closures.
In this case, the first, fourth, and third notes of the first measure are the end notes of
symbol P, and the third note of the second measure is the start and end notes of the
symbol. Thus, we define ”closure” as the union set A ∪ B when the symbol-start note
is represented by set A and the symbol-end note by set B.

2.2 Closure Estimation Based on Inter-onset Interval

Our proposed method uses a closure-estimation method that focuses on the change in
the inter-onset interval (IOI). Researchers have attempted to estimate a closure by focus-
ing on note duration. For example, with current closure-estimation methods, the closure
is considered to be the point where the note duration increases [6] or rests occur [8]. The
problem with these methods is that they estimate many closures for melodies that have
alternating notes and rests. However, we integrate the above methods by focusing on the
change in the IOI. Because the IOI is the difference between the times at which each
note occurs, the IOI of any two notes will not change even if the note value changes or
rests are inserted, unless the timing of onset is changed. Because time is handled differ-
ently for note value and IOI, it is necessary to develop a method for detecting changes
in note duration when targeting the IOI. Current methods are based on the note value
(quarter notes, eighth notes) in a score. It is reasonable that an increase in note value
is defined as a factor of two or more compared with the previous notes. Therefore, we
consider a note at which the IOI increases by a factor of two or more compared with
the previous IOI as the closure.

Closure estimation can be used to limit the targets for symbol assignment. As above,
because we define a closure to be the union set of the start and end notes of a symbol,
we do not assign symbols across closures. However, if the symbols before and after the
closure are identical, sometimes they may be regarded as symbols across the closure.
The details are given later.
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2.3 Transition of Pitch

We introduce transition of pitch on the basis of the hypothesis that the first note of a
pitch-transition pattern that frequently occurs in a melody is likely to be the symbol-
start note. Because the length of the I-R symbol is three, we calculate the probability of
occurrence of a tri-gram in a melody. In addition, the first two notes in the I-R symbol
are those that generate an implication. The third note will satisfy or deny the implica-
tion. Thus, we use the probability of the (i+2) th note occurring after the (i+1)th and
i th notes, P (i+ 2|i, i+ 1), as a feature for estimating the symbol-start note.

The distribution of P (i+2|i, i+1) changes depending on how the random variable
is determined. For example, when determining the transition probability of a melody,
the pitch is generally used as a random variable. However, when the pitch is used as
a random variable, the probability distribution after learning is likely to be sparse. To
avoid this, we consider two random variables, pitch interval and qualitative pitch inter-
val. Because pitch intervals are divided into two values, i.e., S (small) and L (large), in
I-R analysis, we define qualitative pitch as a binary expression of n or less seminotes
and more than n seminotes.

2.4 Beat Structure

We use the beat structure for symbol assignment. The beat structure is known to affect
group formation when listening to a melody. Fraisse reported that when presented with
a sequence of sounds that occur in the same time span, people divide these sounds into
two or three repetitive groups [7]. We hypothesize that the I-R symbols are also a type of
group, and that symbols are assigned on the basis of the beat. For beat strength, we use
the value obtained from Music21Object.beatStrength implemented in the Python library
music21 [1] as a feature value. In the beatStrength object, beat strength is expressed as
a relative value, such as 1.0 for the first beat of a measure, 0.5 for downbeats, and 0.25
for upbeats.

2.5 Feature Integration

We estimate symbol-start notes from closure, pitch-transition pattern, and beat struc-
ture. The search range for estimating the symbol-start note is the interval from one
closure to the next. We integrate pitch-transition pattern and beat structure within this
interval. Integration refers to standardizing each value then calculating the sum. Be-
cause the sum of values indicates how likely it is to be a symbol-start note, we assign
the symbols in order, starting with the highest value.

3 Symbol Assignment

3.1 Previous Symbol-assignment Method and Actual Data

There are ambiguities with current method of I-R symbol assignment. Basically, we can
make rules from the PID and PRD proposed by Narmour on how to assign symbols to
the three notes. However, we also need to determine a threshold for determining the S
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  

Fig. 3. Distribution of I-R symbols assigned to triplet. Horizontal axis is number of seminotes in
first and second notes, and vertical axis is number of seminotes in second and third notes.

or L pitch interval as a hyperparameter. Figure 3(a) shows the distribution of symbols
when S is six or less seminotes and L is more than six seminotes, indicating that differ-
ent symbols are being assigned after the threshold. Nothing is written to the coordinates
corresponding to triplets that do not assign the I-R symbols. Figure 3(b) shows the dis-
tribution of the I-R symbols observed from Narmour’s manual analysis. These figures
show the correspondence between the symbols observed from Narmour’s analysis and
the pitches of the triplets, with the size of each point proportional to the number of
times it was observed. We did not observe any example of“other” symbol assigned to
a triplet. The intricacy of each symbol’s region concerning the axial direction suggests
that the threshold for determining the I-R symbol to be assigned is not fixed.

We introduce a symbol-assignment method that recursively changes the threshold.
If the threshold is defined as n, then S can be regarded as a pitch within n semitones, and
L as a pitch greater than n semitones. The initial threshold is n = 6, following Narmour’s
rule-based method. After the symbol assignment with n = 6 is completed, we gradually
increase the threshold from n = 1. This operation yields a distribution of symbols, as
shown in Figure 3(c). We can see that it includes the symbols in Figure 3(a) and many
of those in Figure 3(b).

3.2 Detailed Rules for I-R Symbol Assignment

To conduct I-R analysis for an actual melody, we need to determine the number of sym-
bols to be assigned to each note. For example, if we allow three symbols to be assigned
to any note, the operation is the same as the I-R analysis for a tri-gram. We conducted
I-R analysis with two and three maximum symbol assignments and compared the re-
sults.

The object of I-R analysis is a triplet, but four or more notes may be assigned sym-
bols P or D (Duplicate). These symbols have the characteristic of repeating similar
pitches in the same direction. Thus, the repetition of symbol P or D is thought to am-
plify the implication. Therefore, if symbols P and D are superimposed, they are merged
and considered one symbol.
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However, this is not the case if the implied attenuation occurs within symbols P and
D, which consist of four or more notes. As already indicated, even when symbol P is
consecutively, they may not be integrated (Figure 2). This is thought to be due to the
fact that closures occur between symbols. However, it is difficult to investigate all the
possibilities of generating closures. Thus, we introduce a symbol-integration rule that
focuses only on the beat structure, which can be understood intuitively.

4 Experiment

We conducted an evaluation experiment to investigate the accuracy of the proposed im-
plementation method in estimating the symbol-start tone and the factors that contributed
to the results. There were five evaluation items.

Table 1. Evaluation items

Evaluation items

1. Features
1-1. Closure estimated from IOI
1-2. Transition probability of triplet
1-3. Beat strength

2. Random variable with transition probability of triplet
2-1. Pitch
2-2. Interval
2-3. Qualitative pitch interval

3. Maximum number of symbols assigned
3-1. Two
3-2. Three

4. Division of symbols (Beat Strength)

4-1. No division
4-2. First beat of measure (1.0)
4-3. Downbeat (0.5)
4-4. Downbeat and upbeat (0.25)

5. Threshold of symbol assignment
5-1. Narmour’s method (N = 6)
5-2. Proposed Method

4.1 Evaluation values and dataset

We used the results of the manual analysis by Narmour as the correct data. Because
the rules of I-R analysis are often ambiguous and the results are subjective, there is no
large data set of I-R analysis results. Thus, we used 61 examples taken from Narmour’s
analysis examples [3] as the correct data. The melodies used as the correct data were
selected on the basis of the following two criteria. The first criterion is the number of
notes contained in the melody to be analyzed. If the number of notes is four or less,
the results of the I-R analysis can be uniquely determined. Thus, we did not take into
account melodies not considered as correct data. The second criterion is whether the
three tones to be analyzed are adjacent to each other. In Narmour’s analysis, there is
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an example in which similar sound sequences are considered as one cohesive unit, and
the beginning of the unit is extracted and subjected to I-R analysis. In these cases, we
did not consider them as correct data because it is necessary to select three tones for
I-R analysis, which is beyond the scope of this study. The correct data were all created
manually as MusicXML with the following information: pitch, duration, onset time, I-R
symbol, and symbol-start note.

The input to the system is pitch, duration, beat strength, and the output is a binary
value indicating whether the note is a symbol-start note. Thus, we used recall, precision,
and F-measure to evaluate the method.

4.2 Training Data

To calculate Feature 1-2. (Transition probability of triplet), we used 300 melodies from
GTTM DataBase [5] as training data. As mentioned above, we did not label the training
data because what we want is the conditional probability of three adjacent notes in the
melody. Because the conditional probability will be zero if the pitch-transition pattern
included in the target melody does not exist in the training data, we included the target
melody in the training data.

4.3 Evaluation Results

Figure 4 presents the results for symbol-start note estimation when different features are
used for estimation. Cases 1 to 8 on the horizontal axis of each bar graph correspond
to the combinations of features in Table 2. The bars located on the left side are the
evaluation scores when more features were used. Case 1 is the result of estimation with
three features, and Case 8 is that without any features. The highest score was obtained
when all the features were used.

We found that the score tended to increase with the number of features used. How-
ever, there was no difference in the F-measures between Case 4, which used two fea-
tures, and Case 5, which used one feature. Because the difference between Cases 4 and
5 is the presence or absence of Feature 1-2, Feature 1-2 is considered to have an effect
on the score. However, there was a difference of 0.1 in the F-measure of Cases 2 and
6, which also differed only in the presence and absence of Feature 1-2. This result in-
dicates that it is not only the features used in the estimation but also the combination of
features.

Table 2. Feature selection

Feature Evaluation items

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8
1-1. Closure estimated form IOI ✓ ✓ ✓ ✓
1-2. Transition probability ✓ ✓ ✓ ✓
1-3. Beat strength ✓ ✓ ✓ ✓
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Fig. 4. Experimental results for Cases 1 ‒ 8 regarding 2-3. Qualitative pitch interval, 3-2. Three,
4-2. First beat of measure, and 5-1. Narmour’s method (N = 6)
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Fig. 5. Experimental results for evaluation item 2 regarding Case 1, 3-2. Three, 4-2. First beat of
measure and 5-1. Narmour’s method (N = 6))

Figure 5 presents the results for symbol-start note estimation when conditional prob-
abilities are calculated using different random variables. The value of n in the graph
represents the number of semitones used to determine the qualitative pitch interval. For
example, if n = 3, all intervals appearing in the melody are represented as two values,
one for intervals of three semitones or less, and one for intervals of four semitones or
more. The highest evaluation values were obtained when n = 6, 7, and 8.

Figure 6 presents the results for symbol-start note estimation when comparing the
maximum number of symbols assigned. When the maximum number of symbols as-
signed is three (3-1.), the analysis results are equivalent to the I-R analysis results for a
tri-gram with the symbols that straddle the closure removed. We can see in Figure 6 that
when the maximum number of symbols is three (3-1.), recall is higher than when the
maximum number of symbols is two (3-2.). This is because when the maximum number
of symbols is three, our method estimates more symbol-start notes. However, precision
decreased. Therefore, Figure 6 indicates that if we want to achieve a high F-measure, it
is better to use the maximum number of symbols of two.
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Fig. 6. Experimental results for evaluation
item 3 regarding Case 1, 2-3 Qualitative
pitch interval, 4-2. First beat of measure and
5-1. Narmour’s method (N = 6)
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Fig. 7. Experimental results for evaluation
item 4 regarding Case 1, 2-3. Qualitative pitch
interval, 3-2. Three, and 5-1. Narmour’s method
(N = 6)
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Fig. 8. Experimental results for evaluation item 5. regarding Case 1, 2-3. Qualitative pitch inter-
val, 3-2. Three, and 4-2. First beat of measure

Figure 7 presents the results for symbol-start note estimation when symbols P and
D, which consist of four or more notes, are divided in accordance with the beat strength.
Thus, the number of notes considered to be symbol-start notes increased. The condi-
tion with the highest precision was when no splitting was carried out. However, recall
was lowest among the four conditions, which indicates that the coverage in finding the
symbol-start note is low. The highest F-measure was obtained when beat strength was
4-1. (beat strength = 1.0), which is when the symbols are split at the beginning beat of
the measure. Also, when splitting symbols on smaller beats (downbeat or downbeat and
upbeat), precision decreased. Hence, if we want to increase the accuracy of symbol-start
note estimation, only splitting symbols at the beginning of the measure is sufficient.

However, the small difference in the evaluation values for 4-1., 4-2., and 4-3. (beat
strength = 1.0, 0.5, and 0.25) may be due to a bias in the appearance of symbols P and
D. In this experiment, the best score was obtained by estimating the symbol-start note
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with a beat strength of 1.0, but we do not know whether similar results can be achieved
when we conduct I-R analysis on melodies with fast passages.

Figure 8 presents a comparison of the results of symbol-start note estimation with
different symbol-assignment methods. The method of assigning these symbols con-
forms to the symbol distribution shown in Figure 3. Narmour’s method (N = 6) corre-
sponds to Figure 3(a), and the proposed method corresponds to Figure 3(c). The pro-
posed method had a better score than Narmour’s method.

The difference between the two methods is in the handling of symbols that were
considered as ”other” with Narmour’s method. With this method, no symbol is assigned
to the triplet corresponding to the ”other”, but with the proposed method, a symbol is
assigned to the triplet. Thus, more notes will be inferred as symbol-start notes with the
proposed method.

5 DISCUSSION AND CONCLUSION

We proposed an implementation method for an I-R analyzer with symbol-start note
estimation that is based on note duration, beat structure, and uses pitch transition and a
symbol-assignment method for changing the threshold recursively. With the examples
of Narmour’s I-R analysis, our method had an F measure of 0.86. We also conducted a
comparative verification for each feature.

We evaluated the accuracy of our I-R analyzer, but its usefulness in MIR is not clear.
Features based on human cognition have been used to get boundary, such as lyrics and
syllables [9]. By making comparisons with such studies, we hope to be able to compare
the usefulness of I-R model from a cognitive perspective. Future work includes feature
design for treating I-R symbols as features and comparison with previous studies.
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Abstract. This paper describes a time-span tree leveled by the length of the 
time span. Using the time-span tree of the Generative Theory of Tonal Music, it 
is possible to reduce notes in a melody, but it is difficult to automate because 
the priority order of the branches to be reduced is not defined. A similar prob-
lem arises in the automation of time-span analysis and melodic morphing. 
Therefore, we propose a method for defining the priority order in total order in 
accordance with the length of the time span of each branch in a time-span tree. In 
the experiment, we confirmed that melodic morphing and deep learning of time-
span tree analysis can be carried out automatically using the proposed method. 

Keywords: Generative theory of tonal music (GTTM), time-span tree, time-
span reduction, melodic morphing, Transformer.  

1 Introduction 

Our goal is to automate the system using a time-span tree of the Generative Theory of 
Tonal Music (GTTM) [1]. GTTM consists of grouping structure analysis, metrical 
structure analysis, time-span tree analysis, and prolongational tree analysis. a time-
span tree is a binary tree with a hierarchical structure that describes the relative struc-
tural importance of notes that differentiate the essential parts of the melody from the 
ornamentation. 

The time-span tree in Fig. 1 is the result of analyzing a melody (a) on the basis of 
GTTM. Reduced melodies can be extracted by cutting this time-span tree with a hori-
zontal line and omitting the notes connected below the line (Fig. 1 (b)–(f)). Melody 
reduction with GTTM is the absorption of notes by structurally important notes. 

The problem with previous systems using time-span trees is that the priority order 
of branches of a time-span tree is not defined. The GTTM-based melodic-morphing 
algorithm we previously proposed was difficult to automate because it included a 
time-span reduction process [2, 3]. We have been developing a GTTM analyzer using 
deep learning and have been able to automate grouping structure analysis and metrical 
structure analysis using deep leaning [4, 5]. How-ever, deep learning of time-span tree 
analysis is difficult to automate due to the ambiguity of the reduction process. 

Therefore, we propose a method for defining the priority order in total order in ac-
cordance with the length of the time span of each branch in the time-span tree, ena-
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bling melodic morphing and time-span analysis to be automated. Sections 2 and 3 
describe problems with implementing our melodic-morphing algorithm and time-span 
analysis. In Section 4 we present our proposed method for the solving the above-
mentioned problems. The experiments in Section 5, we show that melodic morphing 
and time-span analysis can be automating by prioritizing the branches of the time-
span tree. We conclude in Section 6 with a brief summary and mention of future 
work. 

 
Fig. 1. Time-span tree and melody reduction 

2 Implementation Problems of Melodic-Morphing Algorithm 

The meaning of morphing is to change something, such as an image, into another 
through a seamless transition. For example, a method of morphing one face picture 
into another creates intermediate pictures through the following operations. 
(a1) Link characteristic points such as eyes and nose, in the two pictures (Fig. 2a). 
(a2) Rate the intensities of the shape (position), color, etc. in each picture.  
(a3) Combine the pictures. 

2.1 Ideas of Melodic Morphing 

 Similarly, our melodic-morphing algorithm creates intermediate melo-dies with 
the following operations. 
(b1) Link the common pitch events of the time-span trees of two melodies (Fig. 2b).  

 
Fig. 2. Examples of linking two pictures/melodies 
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(b2) Remove those notes that do not reside in the common part by using partial melo-
dy reduction, which is explained in the next subsection. 
(b3) Combine both melodies. 

By using the time-span trees σA and σB from melodies A and B, respectively, we 
can calculate the common events of σA ⊓ σB, which includes not only the essential 
parts of melody A but also those of melody B (Fig. 3 (b1)). The meet operation σA ⊓ 
σB is abstracted from σA and σB, and those abstracted notes that are not included in σA 
⊓ σB are regarded to be the difference between σA and σB. 

2.2 Partial Melody Reduction 

Music features contained in σA and σB should exist even in what is not included in the 
common part. To retrieve these characteristics, we need a method of smoothly in-
creasing or decreasing the number of features. Partial melody reduction abstracts the 
notes of a melody by using reduction. 

With partial melody reduction, we can first acquire melodies αi (i = 1, 2, ⋯, n) from 
σA and σA ⊓ σB with the following algorithm. The subscript i of αi indicates the number 
of notes that are included in σA but not in σA ⊓ σB. 
Step 1: Determine the level of abstraction The user determines the parameter L that 

determines the level of melody abstraction. Parameter L is from 1 to the num-
ber of notes that are included in σA but not included in σA ⊓ σB.  

Step 2: Abstraction of notes This step involves selecting and abstracting a note that 
has the fewest dots, obtained from metrical analysis, in the difference of σA and 
σB. The numbers of dots can be acquired from the analysis results. If two or 
more notes have the fewest dots, we select the first one.  

Step 3: Iteration Iterate step 2 L times. 
Subsumption relations hold as follows for the time-span trees σαm constructed with 

the above algorithm. 

 
Fig. 3. Overview of melodic-morphing algorithm 
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𝜎𝜎𝐴𝐴  ⊓ 𝜎𝜎𝐵𝐵  ⋤  𝜎𝜎𝛼𝛼𝑛𝑛  ⋤  𝜎𝜎𝛼𝛼𝑛𝑛−1  ⋤  ⋯  ⋤  𝜎𝜎𝛼𝛼2 ⋤  𝜎𝜎𝛼𝛼1 ⋤  𝜎𝜎𝐴𝐴  (1) 
In Fig. 3 (b2), there are nine notes included in σA but not included in σA ⊓ σB. 

Therefore, the value of n is 8, and we can acquire eight types of melody αi (i = 1, 2, ⋯, 
n) between σA and σA ⊓ σB. Hence, melody αi attenuates features that exist only in 
melody A. 

In the same manner, we can acquire melody β from σB and σA ⊓ σB as follows. 
                          𝜎𝜎𝐴𝐴  ⊓ 𝜎𝜎𝐵𝐵  ⋤  𝜎𝜎𝛽𝛽𝑗𝑗  ⋤  𝜎𝜎𝐵𝐵  (2) 

2.3 Combining Two Melodies 

We use the join operator ⊔ to combine melodies σαi and σβj , which are the results of 
the partial reduction done using the time-span tree of melodies σA and σB (Fig. 3 (b3)). 

The simple join operator is not sufficient for combining σαi and σβj , because σαi ⊔ 
σβj is not always a monophony nevertheless σαi and σβj are monophonies. In other 
words, the result of the operation may become polyphony (chords) when the time-
span structures overlap and the pitches of the notes differ.  

To solve this problem, we introduce a special notation, [n1, n2], which indicates 
note n1 or note n2, as a result of n1 ⊔ n2. Accordingly, the result of σα ⊔ σβ is all possi-
ble combinations of monophony. 

 
2.4 Implementation Problems of Melodic-morphing Algorithm 

Although we have given priority to automating the morphing process, our melodic-
morphing algorithm has the following two problems. 

Problem 1: No order of abstract notes. The first problem has to do with the order of 
abstract notes in partial melody reduction. In Step 2 of Section 2.2, an abstraction is 
made from the notes with the fewest dots, but this is not always the case, for example, 
in a time-span tree where there is a structurally salient note on a weak beat. In addi-
tion, we have to consider whether it is appropriate to uniquely determine the partial 
reduction path, as in Equation 1 in Step 3. If there are multiple paths for partial reduc-
tion, there is a possibility that more diverse melodies can be output. 

 

Problem 2: Notes with overlapping times occur. The second problem is that the 
two notes overlapped temporally that may occur in the join of two time-span trees. In 
such cases, it is necessary to manually select one melody from among multiple gener-
ated melodies, and it is difficult to completely automate the morphing method. Fur-
ther, the user remains in the dark as to the morphing process. In particular, it is diffi-
cult for the user to understand that the number of melodies output as a result of a 
number of melodic morphing changes. Even if the user understands the outline of the 
morphing method in Section 2, the outputs of multiple melodies may not match his or 
her expectations. 

Our approach for automating melodic morphing is to define the order of notes ab-
stracted by partial reduction and the order of notes selected by join. That is, when the 
time-span trees σA and σB of melodies A and B and the number of notes to be abstract-
ed for each are determined, a unique melody, C, is obtained.  



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

159

 

3 Implementation Problems of Deep-learning-based Time-span 
Tree Analyzer 

There are three problems in the deep learning of time-span tree analysis, as follows. 

Problem 3: Low Number of Ground Truth Data Sets. As ground truth data of the 
time-span tree, 300 melodies and their time-span trees are published in the GTTM 
database [6]. However, the number of data sets (300) is extremely small for learning 
deep neural networks (DNNs). For a small amount of learning data, over-fitting is 
inevitable, and an appropriate value cannot be out-put when unknown data are input. 

In the time-span analysis by musicologists, the entire time-span tree cannot be ac-
quired at once but gradually analyzed from the bottom up. Therefore, the minimum 
process of analysis is set as one data set, then the number of data sets is increased. For 
example, if the DNN [7] directly learns the relationship between a four-note melody 
and its time-span tree, the number of data sets is only one. If we consider the process 
of reducing one note to one data set, the number of data sets will be three, as shown in 
Fig. 4a. 

The trained DNN estimates the melody consisting of n-1 notes that is reduced to one 
note when a melody consisting of n notes is input. A time-span tree for a melody con-
sisting of four notes can be constructed by estimating four to three notes, three to two 
notes, and two to one note, and combining the results (Fig. 4b). 

 
Fig. 4. Learning and estimating by stepwise reduction 

Problem 4: Ambiguity of Reduction Process.  

Time-span reduction removes decorative notes by pruning from the leaves at the tip of 
the tree, leaving only structurally important notes in the melody. To implement the 
stepwise reduction described above, the priority of branches must be obtained in a 
total order. 
However, when it comes to GTTM, there are only a few examples of reduction using 
a time-span tree, and there is no detailed explanation on the reduction procedure [1]. 
For example, in Fig. 1, we can see five levels of reduction results, but it is not clear 
how many levels are necessary. 
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Marsden et al. [8] suggested a means of determining the salience of two note events a 
and b, neither of which are descendants of the other. They proposed defining the sali-
ence of an event as the duration of the maximum of the time spans of the two children 
at the branching point when the event is generated or where it is reduced. 
To automate stepwise reduction, it is more important for the DNN to learn the rela-
tionship before and after the reduction than it is to reduce the order of the notes to 
close to that of human cognition. In Section 4, we propose a time-span tree leveled by 
the duration of the time span for a simple reduction order that is easy for the DNN to 
learn.  

4 Solution: Time-span Tree Leveled by Duration of Time Span  

The head in a time-span tree is the top-most pitch event, that is, the most salient in the 
tree. When two adjacent subtrees are combined, one of the two heads of the subtrees 
becomes the head of the whole. This indicates that the head of a tree is most salient in 
the time interval the tree occupies. Since a tree is a hierarchical combination of sub-
trees, the longest interval of each event in the tree is the most salient as the head of a 
subtree. Accordingly, we define the base case, when a subtree consists of a single 
pitch event, to be the duration of the event. 

Maximum time span: We call the longest temporal interval when a given 
pitch event becomes most salient as the maximum time span for the event. In 
other words, the maximum time span of a pitch event coincides with the tem-
poral duration of the subtree of which the event becomes the head, as a result 
of the time-span analysis. 

The priority of each branch of the time-span tree is determined with a time-span 
tree drawn with the maximum time span used in the time-span segmentation carried 
out as the first step of the analysis of time-span reduction. The branch priority is de-
termined in accordance with the following rules. 
 Priorities are assigned to each level from the top of the time-span tree drawn 

with the duration of the time span.  
 At the top level, the main branches take precedence.  
 At the second and subsequent levels, the higher the priority of a branch X is, the 

higher the priority of the branch off of X becomes.  
Figure 5 shows a time-span tree drawn with the duration of the time span. The 

branch priority is determined in order from the top in accordance with the first rule. 
Then, in accordance with the second rule, branch 1 has the highest priority in this 
time-span tree, and branch 2 has the second-highest priority. The second level in this 
tree is the double-note level. In accordance with the second rule, the branch off from 1 
becomes 3, and that from 2 becomes 4. In the same manner, the priority is determined 
up to the 16th note level. 

4.1 Automatic Melodic Morphing 

For automatic partial reduction, we determine how much each melody is to be re-
duced and reduce the branches of the non-common part of the two melodies. If the 
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non-common part of the melody of A is reduced by 30%, the reduction ratio of melo-
dy B is determined to be 70%, so that the total is 100%. Then, in the non-common 
part of each melody, the branches are reduced in order from the branch with the low-
est priority. The number of notes is finite, so reducing them in accordance with a set 
reduction ratio is often impossible. In such cases, the branches are reduced to be clos-
est to the reduction ratio. 

As described in Section 2.3, when a melody is synthesized by a join operation, the 
branches of the time-span tree may overlap at the same time. For example, if the 
branches and notes overlap at the same time due to the join operation of melody A and 
B, the note with the lower reduction ratio is left. If both reduction ratios are 50%, the 
note of A is left. 

 
Fig. 5. Time-span tree leveled by duration of time span. 

4.2 Automatic Time-span Tree Analysis by Deep Learning 

The melody is leveled by the duration of the time span, then it is reduced one note at a 
time from the lowest level. In the following explanation, when there is a branch, the 
child branch is called a “sub-branch,” and the parent branch is called the “main 
branch”. Since the ground truth data of the time-span tree are mono-phonic, the target 
is monophony in this paper. 

In the time-span tree leveled by the duration of time span, the level of the main 
branch is always higher than that of a sub-branch. Therefore, if the reduction is car-
ried out in order from the lowest level, the reduction process will proceed without 
contradiction. It is also important that the reduction process be simple when learning 
stepwise reduction with a DNN. 

Previous time-span tree analyzers (ATTA [9] and sigmaGTTMIII [10]) had low 
performance because they analyzed in a bottom-up manner using only local infor-
mation. In contrast, we propose using the entire note sequence before and after step-
wise reduction for learning the DNN. 
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When a recurrent neural network (RNN) [11] or long short-term memory (LSTM) 
[12] is used as the DNN, the DNN can learn using note sequence, but when a long 
note sequence is input, the DNN forgets the beginning of it, thus it cannot make use 
of all the information of the note sequence. 

Seq2Seq [13] and Transformer [14] can learn and predict using the information of 
the entire note sequence. The difference between Seq2Seq and Transformer is the 
representation of position in the note sequence: Seq2seq uses relative positions by 
sequentially inputting sequence data into the RNN, while Transformer has an inde-
pendent additional layer of position information and uses the absolute position. 

Therefore, if the absolute position is important for stepwise time-span reduction, 
Transformer will have high performance, and if the relative position is important, 
Seq2Seq will have high performance. We evaluated which of the two has the higher 
performance, as described in Section 5.2. 

5 Experiment and Results 

As a verification of the usefulness of our proposed time-span tree leveled by the dura-
tion of time span, we conducted an experiment to confirm whether melodic morphing 
and time-span tree analysis can be carried out automatically. 

5.1 Automating Melodic Morphing by Prioritization of Branches 

After acquiring the time-span tree, there was no arbitrariness in the prioritization of 
the branches, partial reduction, and combination of melodies. Therefore, when the 
reduction ratio was determined, the morphed melody could be deterministically ob-
tained. In Figure 6, the notes included in melody A are displayed with stems up, and 
those included in melody B are displayed with stems down. 

 
Fig. 6. Results of automatic morphing. 

&

&

&

&

&

&

&

&

&

&

&

##
##
##

##

##

##

##

##

##

##

##

c

c

c

c

c

c

c

c

c

c

c

j
J

j
J

j
J

j
J

. j

. j

. j

. j j r
R

j j r
R R

j j
R R

j j
R R

j
R

j
R

. j

R

R
j jR J
j jR J

r j
J

r j
J

r j

. j

R

R J
j

R J
j j

R J
r j j

J
r j

J

j

J

J
jJ J

J J
J J

j
J

j
J

j
J J

j j
J J

j j
J J

r
J

r

R

R
j

R

R J

R J

J

J

j j
R J j
R Jj j r .
R J Jj j r .
R J J r .

J
r .

J
r .

A 100%

A 90%

A 80%

A 70%

A 60%

A 50%

A 40%

A 30%

A 20%

A 10%

A 0%



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

163

 

5.2 Comparison of Seq2Seq and Transformer in Stepwise Time-span 
Reduction 

Learning data and evaluation data were created from MusicXML, which are score 
data, and time-spanXML, which is the ground truth of a time-span tree by the fol-
lowing procedure. The proposed method was first used to reduce (in a stepwise man-
ner) each of the 300 melodies by using the time-span tree, and data before and after 
the reduction were generated. 

     Next, the notes in the melodies were made into a one-character string with the 
pitch and duration concatenated. The pitch was represented as 12 types: C, C#, D, D#, 
E, F, F#, G, G#, A, A#, and B (excluding octave information). A key that was a major 
or minor key was then changed to C major or A minor. The duration was represented 
by multiplying the duration elements of MusicXML by 4. By multi-plying by 4, the 
duration of most notes became an integer, but since there were melodies containing 
only a few triplets, quintuplets, sextuplets, and septuplets, the duration was rounded 
up to an integer. Then, a space was inserted between the strings to represent notes. 
Finally, in the note sequence after the reduction, “r” was inserted at the position of the 
reduced note so that we would know which note had been reduced. 

The Seq2Seq and Transformer models were both trained with 7362 stepwise time-
span-reduction training data sets generated from 270 songs from a GTTM database 
consisting of 300 pieces, and 849 evaluating data sets were generated from the re-
maining 30 pieces. Table 1 shows the accuracy of matching the evaluation data and 
prediction data after 20,000 epochs of training. We can see that Transformer outper-
formed Seq2Seq in stepwise time-span reduction. Learning was carried out using 
Nvidia Quadro RTX5000 for laptops [15], and the learning time of Seq2Seq was six 
days, which is much longer than the seven hours taken by Transformer. 

Table 1. Comparison of Seq2Seq and Transformer models. 

 Seq2Seq Transformer 
Accuracy 0.90 0.99 

6 Conclusion  

We proposed the introduction of time-span tree leveled by the duration of time span 
to problems that are difficult to automate due to the lack of prioritization of time-span 
tree branches.  Experimental results confirmed that melodic morphing and time span 
analysis based on deep learning can be automated. 

We plan to develop various applications and content by using a time-span tree. Our 
morphing method has appeared in the smart-phone applications of Melody Slot Ma-
chine [16], which has a huge number of downloads. By using an automated morphing 
system, it is possible to build a system that facilitates the addition of content on Mel-
ody Slot Machine. 
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Abstract. “Structure” is a somewhat elusive concept in music, despite being of
extreme importance in a variety of applications. Being inherently a hidden fea-
ture, it is not always explicitly considered in algorithms and representations of
music. We propose a hierarchical approach to the study of musical structures,
that builds upon tree representations of music like Schenkerian analysis, and adds
additional layers of abstraction introducing pairwise comparisons between these
trees. Finally, these representations can be joined into probabilistic representa-
tions of a music corpus. The probability distributions contained in these repre-
sentation allow us to use concepts from Information Theory to show how the
structures we introduce can be applied to musicological and music information
retrieval applications.

Keywords: Structure, Schenkerian Analysis, Music Representations

1 Introduction

“Structure” is a term that, even only considering music, can assume a variety of mean-
ings. One common use of this term relates to form: the chaining of different sections to
create a longer musical piece where some sections are repeated, with or without vari-
ations. Another use is more related to shorter melodic fragments, and relates to how a
melody can be divided into periods, phrases, and motifs. In this latter case, a musicolo-
gist who wishes to analyze structure will try to divide the music into smaller segments
and to find similarities, repetitions, inversions, parallel movements or otherwise links
between these segments.

Despite the variety of information that can be gathered by such a process, this kind
of analysis is often overlooked in algorithms and representation for computational mu-
sicology or music information retrieval. This becomes especially evident when compu-
tational systems try to generate novel music after learning some features of music from
a given dataset of human compositions [1]. However complex or elegant the model
used for the generation, we are still far from obtaining results that are on a par with the
starting material. This is generally due to the fact that while these models can capture
some aspects of the music they analyze, e.g., typical melodic motifs, they fail to capture
the entirety of the hierarchical, structural aspects of music. In many cases, this leads to
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algorithms that generate music that sounds reasonable for a short time, but seems to
”wander off” as the length of the generated piece increases [2, 3, 5].

In the present work we aim to propose a novel solution to this, using a representation
that builds upon existing hierarchical representations of music inspired by Schenkerian
Analysis, but that goes further by operating pairwise comparisons between trees re-
ducing small segments of music. These comparisons allow to find the kind of reuse of
melodic material that we mentioned before. These structured comparisons are then fur-
ther abstracted, by considering the comparisons operated on a variety of pieces rather
than a single piece. These new representations describe structural regularities within a
corpus, and leverage approaches from Information Theory to allow us to isolate more
interesting features within the representation and to operate comparisons with other
pieces.

1.1 Related Work

This work is linked to a variety of computational musicology applications. Some analy-
sis tools that also abstract tree-like structures based on existing theories of music, such
as Schenkerian analysis [12, 13] or GTTM [8, 9], are well known in literature; however,
in our proposal the tree representations are not the final goal, but a means of intra-piece
comparison, allowing analysis the internal repetition structure. The output is similar to
other algorithms meant for form analysis [18], but to our knowledge our approach has
never been applied in that field. Finally, Wiggins [19] provides an in-depth theoretical
base for the relevance of this approach to music analysis and generation, but does not
specify any practical approach to perform the proposed analyses.

2 Representations

The algorithms we describe require the input corpus to be made of monophonic melodies
with chord annotations over the melody (lead sheets). We used MusicXML format, but
other formats could be appropriate as well.

The first step of the process is to segment the input pieces into segments of equal
duration. Depending on the level of detail that is being investigated, a length of one or
two measures can be appropriate.

Each segment is then individually analyzed, and from each a tree representing
melodic reductions is built, following the algorithm described in [13, 17, 4]. This ap-
proach uses a sliding window that passes over the notes in the segment, and every time
the window contains two or more notes, one of these is deemed the most important
according to the tonality, the metric position, and the current chord. This note is kept
and the others are eliminated, and the remaining note is made longer to fill the void left
by the other notes. At the end of each iteration a new simplified melody is created, and
the window is enlarged. At the end of the last iteration, only one note should be left. By
stacking the obtained simplifications, a tree similar to those created by analyses such as
the ones contained in GTTM [11] or in Schenkerian Analysis [15] is obtained. For this
reason we call this tree Schenkerian Tree or simply Sk tree.
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Once the Sk trees are built, it is possible to operate pairwise comparisons between
them, comparing their roots and recursively comparing the child nodes. In particular,
each node in a Sk tree either represents a note that is present in the original melody (a
leaf node) or a note that was created in the process of iterative simplification described
above. In the latter case, this node has two or more children, representing the notes
that were present in the previous simplification, one of which is kept and the others
are eliminated, and it is possible to consider the musical interval of these children. The
comparison between nodes of different Sk trees depends on the content of this inter-
val. The comparable features of these intervals include difference in number of child
nodes, difference in pitch intervals between the children, difference in the direction of
the children’s intervals, or differences in the way that the Schenkerian reduction was
performed (for example if the note that was saved was to the left or to the right of the
child interval). Since this new structure is based on differences between different sec-
tions, we call it Difference Tree or Diff tree Figure 1 shows how a Diff tree can be built
from the comparison of two Sk trees.

 L +7

LeafL +7

27

24

21

18

12

15

  
 


   






































 

















 

DG

Leaf L -1

Leaf Leaf

 L +4

R -1L +6

Leaf Leaf Leaf Leaf

Sk: same
Ch: same
Dir: same
Int: narrow 

Sk: same
Ch: same
Dir: same
Int: narrow 

Sk: diff
Ch: more

Sk: same
Ch: less

Sk: same
Ch: same

(a) (b) (c) (d)

Fig. 1. One example of a simplified diff tree (d), constructed from two sk trees (b and c), each
representing one of the two measures of the excerpt (a).

For each input piece, a set of (n−1)(n)
2 Diff trees are produced, where n is the num-

ber of segments the input piece is divided into. This number is due to the fact that the
segments are not compared with themselves nor the segments prior to them, but only
with segments that come later in the musical piece, so not all the n2 possible com-
parisons are performed. Each Diff tree is then labelled to indicate which segments are
compared in that tree (e.g. if the first and fourth segments are compared, the tree is
labeled ‘0-3’). Once the Diff trees for a set of pieces are produced, the Diff trees that
share the same label (i.e., that refer to segments in the same position but coming from
different pieces) can be joined together into a single tree, that abstracts the general de-
velopment of that particular comparison. For this reason, we call this representation an
Abstraction Tree or Abs tree. The procedure works as follows: a new node which will
be the root of the Abs tree is created. Starting from the root of all considered Diff trees,
for each of the possible features, the new node annotates all the possible values that the
feature assumes in all the given Diff trees and the number of occurrences of those val-
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Fig. 2. A simplified Abs tree built from the two Diff trees on top. For readability, the tree reports
frequencies of occurence and the total number of observation rather than the probabilities that
need to be computed with the Bayesian Estimator. The colors represent the tree from which each
value for each feature comes: blue for left-side tree, red for the right-side one, and purple for
those values that are found in both.

ues. The new node also annotates how many children the roots of the given Diff trees
have, as a new separate feature. Then the algorithm repeats recursively as long as at
least one Diff tree node has at least one child node. Once the recursion process is com-
plete, it is possible to compute the probability of each value v for each feature in each
node, using the following Bayes Estimator [16]:

p(v) =
occ(v) + β

tot+ β ∗ size
(1)

where occ(v) is the number of occurrences of the value v, while tot and size are respec-
tively the total of samples for that feature and the number of possible distinct values for
that feature. β was set to 1. All the features for which tot is less than a certain threshold
(we used 5 in the experiments described below) can be removed as those features would
entail too little information about the corpus. The nodes that remain empty because of
this can be removed as well. Figure 2 shows a simplified example of an Abs tree built
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from two Diff trees. This process basically creates a probability distribution for each
node, consisting of a set of stochastic variables depending on the features present in the
Diff trees. Because of this the Abs tree is similar to a Markov Model, but rather than
having the probability distributions vary in time depending only on the previous state,
the only feature that determines the distribution is the position on the tree. For this rea-
son, it would be misleading to think of an Abs tree as a chain or an automaton, and it is
best to only view it as a static probabilistic description of a musical corpus.

3 Applications

In this section, we demonstrate, through example applications, the utility of the abstract
representations we introduced. To do so, we will apply the explained structures to tasks
relevant to computational musicology and music information retrieval.

3.1 Regularity Detection within a Corpus

As a first example, we show how the above introduced Abstraction Trees can be in-
spected to find regularities within a given corpus. As an example corpus, we will use
the Leone dataset, a set of twenty-four baroque allemandes [6]. Of these twenty-four
we selected the twenty that have sixteen measures in total, to make comparisons easier
thanks to the equal length. All the pieces were divided into two-bar segments and the
abstraction trees pairwise comparing the segments were built as described above. The
procedure produces a large amount of data which is difficult to interpret on its own,
but the tools of information theory can help find the most relevant features. For each
feature in each node, it is possible to compute the normalized entropy (efficiency) of the
probability distribution it describes, which gives a useful indication of the importance
of that feature within the corpus. The lower the entropy, the more strictly that feature
describes a recurring element in the corpus.

For example, as can be seen in Figure 3, looking at the mean normalized entropy
of all the constructed abstraction trees, it becomes evident that the tree comparing seg-
ments 0 and 2 (shown in figure) and the one comparing segments 4 and 6 are the most
regular ones. In those trees, almost each feature is set to “same”, meaning that there
are little or no differences between the above mentioned pairs of segments. Indeed, the
phrases in this corpus tend to repeat after 4 measures (the distance between the start
of segments 0 and 2), and that is captured by the abstraction tree. Moreover, while the
phrases repeat, their ending is varied to make for more definitive phrase endings. This
is captured in the abstraction tree comparing segments 1 and 7 (shown in figure) where
the left side of the tree shows a repetition like the one described above, but in the right
side of the tree the most relevant feature is the one describing the ending grade, which
is usually the tonic, as expected from the closing of a musical period.

3.2 Genre Discrimination

The following example uses another metric commonly used in Information Theory.
While entropy is related to regularity in a probability distribution, Information Con-
tent gives an indication of how unexpected a certain outcome is with respect to a given



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

170

  
  
[0
-2
]

  
  
Ro
ot
 ◊
 e
nt
ro
py
: 
0.
14

  
  
sk
: 
{'
sa
me
':
 2
0,
 '
to
ta
l'
: 
20
, 
'e
nt
ro
py
':
 0
.0
6}

  
  
st
ru
ct
: 
{'
sa
me
':
 2
0,
 '
to
ta
l'
: 
20
, 
'e
nt
ro
py
':
 0
.0
7}

  
  
en
d:
 {
's
am
e'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
06
}

  
  
ch
_i
nt
: 
{'
sa
me
':
 2
0,
 '
to
ta
l'
: 
20
, 
'e
nt
ro
py
':
 0
.0
7}

  
  
di
r:
 {
's
am
e'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
06
}

  
  
in
t:
 {
's
am
e'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
07
}

  
  
co
nt
: 
{'
sa
me
':
 2
0,
 '
to
ta
l'
: 
20
, 
'e
nt
ro
py
':
 0
.0
7}

  
  
ex
pa
ns
io
n:
 {
'b
in
ar
y'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
07
}

  
  
├─
─ 

 R
ig
ht
 ◊
 e
nt
ro
py
: 
0.
13

  
  
├ 

  
 s
k:
 {
's
am
e'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
06
}

  
  
├ 

  
 s
tr
uc
t:
 {
's
am
e'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
07
}

  
  
├ 

  
 e
nd
: 
{'
sa
me
':
 2
0,
 '
to
ta
l'
: 
20
, 
'e
nt
ro
py
':
 0
.0
6}

  
  
├ 

  
 c
h_
in
t:
 {
's
am
e'
: 
18
, 
't
ot
al
':
 1
8,
 '
en
tr
op
y'
: 
0.
08
}

  
  
├ 

  
 d
ir
: 
{'
sa
me
':
 1
8,
 '
to
ta
l'
: 
18
, 
'e
nt
ro
py
':
 0
.0
7}

  
  
├ 

  
 i
nt
: 
{'
sa
me
':
 1
8,
 '
to
ta
l'
: 
18
, 
'e
nt
ro
py
':
 0
.0
8}

  
  
├ 

  
 c
on
t:
 {
's
am
e'
: 
18
, 
't
ot
al
':
 1
8,
 '
en
tr
op
y'
: 
0.
08
}

  
  
├ 

  
 e
xp
an
si
on
: 
{'
bi
na
ry
':
 1
6,
 '
to
ta
l'
: 
16
, 
'e
nt
ro
py
':
 0
.0
9}

  
  
│ 

  
├─
─ 

 R
ig
ht
 ◊
 e
nt
ro
py
: 
0.
28
26
05
05
95
86
66
55

  
  
│ 

  
├ 

  
 s
k:
 {
's
am
e'
: 
16
, 
't
ot
al
':
 1
6,
 '
en
tr
op
y'
: 
0.
07
}

  
  
│ 

  
├ 

  
 s
tr
uc
t:
 {
's
am
e'
: 
15
, 
'm
or
e'
: 
1,
 '
to
ta
l'
: 
16
, 
'e
nt
ro
py
':
 0
.3
4}

  
  
│ 

  
├ 

  
 e
nd
: 
{'
sa
me
':
 1
5,
 '
to
ta
l'
: 
15
, 
'e
nt
ro
py
':
 0
.0
8}

  
  
│ 

  
├─
─ 

 L
ef
t 
◊ 
en
tr
op
y:
 0
.2
3

  
  
│ 

  
├ 

  
 s
k:
 {
's
am
e'
: 
16
, 
't
ot
al
':
 1
6,
 '
en
tr
op
y'
: 
0.
07
}

  
  
│ 

  
├ 

  
 s
tr
uc
t:
 {
's
am
e'
: 
16
, 
't
ot
al
':
 1
6,
 '
en
tr
op
y'
: 
0.
09
}

  
  
│ 

  
├ 

  
 e
nd
: 
{'
sa
me
':
 1
6,
 '
to
ta
l'
: 
16
, 
'e
nt
ro
py
':
 0
.0
7}

  
  
│ 

  
├ 

  
 c
h_
in
t:
 {
's
am
e'
: 
11
, 
't
ot
al
':
 1
1,
 '
en
tr
op
y'
: 
0.
12
}

  
  
│ 

  
├ 

  
 d
ir
: 
{'
sa
me
':
 1
1,
 '
to
ta
l'
: 
11
, 
'e
nt
ro
py
':
 0
.1
0}

  
  
│ 

  
├ 

  
 i
nt
: 
{'
sa
me
':
 1
1,
 '
to
ta
l'
: 
11
, 
'e
nt
ro
py
':
 0
.1
2}

  
  
│ 

  
├ 

  
 c
on
t:
 {
's
am
e'
: 
11
, 
't
ot
al
':
 1
1,
 '
en
tr
op
y'
: 
0.
12
}

  
  
│ 

  
└ 

  
 e
xp
an
si
on
: 
{'
bi
na
ry
':
 6
, 
'u
na
ry
':
 1
, 
't
ot
al
':
 7
, 
'e
nt
ro
py
':
 0
.5
2}

  
  
├─
─ 

 L
ef
t 
◊ 
en
tr
op
y:
 0
.1
7

  
  
├ 

  
 s
k:
 {
's
am
e'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
06
}

  
  
├ 

  
 s
tr
uc
t:
 {
's
am
e'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
07
}

  
  
├ 

  
 e
nd
: 
{'
sa
me
':
 2
0,
 '
to
ta
l'
: 
20
, 
'e
nt
ro
py
':
 0
.0
6}

  
  
├ 

  
 c
h_
in
t:
 {
's
am
e'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
07
}

  
  
├ 

  
 d
ir
: 
{'
sa
me
':
 2
0,
 '
to
ta
l'
: 
20
, 
'e
nt
ro
py
':
 0
.0
6}

  
  
├ 

  
 i
nt
: 
{'
sa
me
':
 2
0,
 '
to
ta
l'
: 
20
, 
'e
nt
ro
py
':
 0
.0
7}

  
  
├ 

  
 c
on
t:
 {
's
am
e'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
07
}

  
  
└ 

  
 e
xp
an
si
on
: 
{'
bi
na
ry
':
 1
5,
 '
te
rn
ar
y'
: 
1,
 '
to
ta
l'
: 
16
, 
'e
nt
ro
py
':
 0
.3
4}

  
  
  
  
├─
─ 

 R
ig
ht
 ◊
 e
nt
ro
py
: 
0.
21

  
  
  
  
├ 

  
 s
k:
 {
's
am
e'
: 
16
, 
't
ot
al
':
 1
6,
 '
en
tr
op
y'
: 
0.
07
}

  
  
  
  
├ 

  
 s
tr
uc
t:
 {
's
am
e'
: 
15
, 
'm
or
e'
: 
1,
 '
to
ta
l'
: 
16
, 
'e
nt
ro
py
':
 0
.3
4}

  
  
  
  
├ 

  
 e
nd
: 
{'
sa
me
':
 1
5,
 '
to
ta
l'
: 
15
, 
'e
nt
ro
py
':
 0
.0
8}

  
  
  
  
├ 

  
 c
h_
in
t:
 {
's
am
e'
: 
9,
 '
to
ta
l'
: 
9,
 '
en
tr
op
y'
: 
0.
13
}

  
  
  
  
├ 

  
 d
ir
: 
{'
sa
me
':
 9
, 
't
ot
al
':
 9
, 
'e
nt
ro
py
':
 0
.1
2}

  
  
  
  
├ 

  
 i
nt
: 
{'
sa
me
':
 9
, 
't
ot
al
':
 9
, 
'e
nt
ro
py
':
 0
.1
3}

  
  
  
  
├ 

  
 c
on
t:
 {
's
am
e'
: 
9,
 '
to
ta
l'
: 
9,
 '
en
tr
op
y'
: 
0.
13
}

  
  
  
  
├─
─ 

 L
ef
t 
◊ 
en
tr
op
y:
 0
.1
6

  
  
  
  
├ 

  
 s
k:
 {
's
am
e'
: 
16
, 
't
ot
al
':
 1
6,
 '
en
tr
op
y'
: 
0.
07
}

  
  
  
  
├ 

  
 s
tr
uc
t:
 {
's
am
e'
: 
16
, 
't
ot
al
':
 1
6,
 '
en
tr
op
y'
: 
0.
09
}

  
  
  
  
├ 

  
 e
nd
: 
{'
sa
me
':
 1
6,
 '
to
ta
l'
: 
16
, 
'e
nt
ro
py
':
 0
.0
7}

  
  
  
  
├ 

  
 c
h_
in
t:
 {
's
am
e'
: 
12
, 
't
ot
al
':
 1
2,
 '
en
tr
op
y'
: 
0.
11
}

  
  
  
  
├ 

  
 d
ir
: 
{'
sa
me
':
 1
2,
 '
to
ta
l'
: 
12
, 
'e
nt
ro
py
':
 0
.0
9}

  
  
  
  
├ 

  
 i
nt
: 
{'
sa
me
':
 1
2,
 '
to
ta
l'
: 
12
, 
'e
nt
ro
py
':
 0
.1
1}

  
  
  
  
├ 

  
 c
on
t:
 {
's
am
e'
: 
12
, 
't
ot
al
':
 1
2,
 '
en
tr
op
y'
: 
0.
11
}

  
  
  
  
└ 

  
 e
xp
an
si
on
: 
{'
bi
na
ry
':
 6
, 
't
ot
al
':
 6
, 
'e
nt
ro
py
':
 0
.1
7}

En
tr
op

y:
M
ea

n

0-
1

0,
62

0-
2

0,
23

0-
3

0,
60

0-
4

0,
67

0-
5

0,
59

0-
6

0,
67

0-
7

0,
56

1-
2

0,
62

1-
3

0,
49

1-
4

0,
62

1-
5

0,
57

1-
6

0,
61

1-
7

0,
50

2-
3

0,
60

2-
4

0,
67

2-
5

0,
59

2-
6

0,
67

2-
7

0,
57

3-
4

0,
64

3-
5

0,
61

3-
6

0,
63

3-
7

0,
60

4-
5

0,
65

4-
6

0,
23

4-
7

0,
54

5-
6

0,
67

5-
7

0,
53

6-
7

0,
54

[1
-7
]

Ro
ot
 ◊
 e
nt
ro
py
: 
0.
71

st
ru
ct
: 
{'
sa
me
':
 2
0,
 '
to
ta
l'
: 
20
, 
'e
nt
ro
py
':
 0
.0
7}

ex
pa
ns
io
n:
 {
'b
in
ar
y'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
07
}

├─
─ 

 R
ig
ht
 ◊
 e
nt
ro
py
: 
0.
65

├ 
  
 s
k:
 {
's
am
e'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
06
}

├ 
  
 s
tr
uc
t:
 {
's
am
e'
: 
18
, 
'l
es
s'
: 
2,
 '
to
ta
l'
: 
20
, 
'e
nt
ro
py
':
 0
.3
8}

├ 
  
 t
o:
 {
'5
':
 1
, 
'1
':
 1
4,
 '
6'
: 
2,
 '
7'
: 
1,
 '
to
ta
l'
: 
18
, 
'e
nt
ro
py
':
 0
.4
9}

├ 
  
 e
xp
an
si
on
: 
{'
bi
na
ry
':
 1
7,
 '
un
ar
y'
: 
1,
 '
te
rn
ar
y'
: 
1,
 '
to
ta
l'
: 
19
, 
'e
nt
ro
py
':
 0
.5
4}

│ 
  
├─
─ 

 R
ig
ht
 ◊
 e
nt
ro
py
: 
0.
43

│ 
  
├ 

  
 s
k:
 {
's
am
e'
: 
18
, 
't
ot
al
':
 1
8,
 '
en
tr
op
y'
: 
0.
07
}

│ 
  
├ 

  
 s
tr
uc
t:
 {
's
am
e'
: 
15
, 
'l
es
s'
: 
3,
 '
to
ta
l'
: 
18
, 
'e
nt
ro
py
':
 0
.4
7}

│ 
  
├ 

  
 t
o:
 {
'5
':
 1
, 
'1
':
 1
1,
 '
6'
: 
1,
 '
7'
: 
1,
 '
to
ta
l'
: 
14
, 
'e
nt
ro
py
':
 0
.5
0}

│ 
  
├─
─ 

 L
ef
t 
◊ 
en
tr
op
y:
 0
.2
7

│ 
  
├ 

  
 s
k:
 {
's
am
e'
: 
19
, 
't
ot
al
':
 1
9,
 '
en
tr
op
y'
: 
0.
06
}

│ 
  
├ 

  
 t
o:
 {
'1
':
 6
, 
'7
':
 1
, 
't
ot
al
':
 7
, 
'e
nt
ro
py
':
 0
.3
2}

│ 
  
├ 

  
 e
nd
: 
{'
di
ff
':
 7
, 
't
ot
al
':
 7
, 
'e
nt
ro
py
':
 0
.1
5}

│ 
  
└ 

  
 e
xp
an
si
on
: 
{'
bi
na
ry
':
 6
, 
't
ot
al
':
 6
, 
'e
nt
ro
py
':
 0
.1
7}

├─
─ 

 L
ef
t 
◊ 
en
tr
op
y:
 0
.6
6

├ 
  
 s
k:
 {
's
am
e'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
06
}

├ 
  
 s
tr
uc
t:
 {
's
am
e'
: 
20
, 
't
ot
al
':
 2
0,
 '
en
tr
op
y'
: 
0.
07
}

└ 
  
 e
xp
an
si
on
: 
{'
bi
na
ry
':
 1
7,
 '
te
rn
ar
y'
: 
2,
 '
to
ta
l'
: 
19
, 
'e
nt
ro
py
':
 0
.3
9}

  
  
├─
─ 

 R
ig
ht
 ◊
 e
nt
ro
py
: 
0.
78

  
  
├ 

  
 s
tr
uc
t:
 {
's
am
e'
: 
17
, 
'l
es
s'
: 
2,
 '
to
ta
l'
: 
19
, 
'e
nt
ro
py
':
 0
.3
9}

  
  
├ 

  
 e
xp
an
si
on
: 
{'
bi
na
ry
':
 8
, 
't
ot
al
':
 8
, 
'e
nt
ro
py
':
 0
.1
4}

  
  
├─
─ 

 L
ef
t 
◊ 
en
tr
op
y:
 0
.7
1

  
  
├ 

  
 s
k:
 {
's
am
e'
: 
19
, 
't
ot
al
':
 1
9,
 '
en
tr
op
y'
: 
0.
06
}

  
  
├ 

  
 s
tr
uc
t:
 {
's
am
e'
: 
17
, 
'm
or
e'
: 
1,
 '
le
ss
':
 1
, 
't
ot
al
':
 1
9,
 '
en
tr
op
y'
: 
0.
54
}

  
  
└ 

  
 e
xp
an
si
on
: 
{'
bi
na
ry
':
 8
, 
't
ot
al
':
 8
, 
'e
nt
ro
py
':
 0
.1
4}

Fig. 3. A table summing up the mean entropy of each abstraction tree derived from the corpus,
and some examples of abstraction trees as a text output of the software. Only the first three levels
were kept for readability. The labels of the tree represent the compared segments: for example
”0-1” means that the first two bars of a piece are compared to measures 3 and 4, since in this case
each segment was two measures long.
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probability distribution. Since musical cognition is strongly related to expectation [10],
this metric becomes a relevant indicator when analyzing musical pieces [14]. In this
experiment, we learnt a set of abstraction trees from the 20 allemandes taken from the
corpus mentioned above, and the difference trees from a set of 20 reels from the Not-
tingham Dataset [7], and from 20 jazz pieces composed between 1921 and 1930 taken
from the EWLD corpus [17]. The abstraction trees contain probability distributions for
each feature in each node, while difference trees can be considered as outcomes for the
same features. This means that for each feature it is possible to compute the informa-
tion content. To give a single measure of the total information content of a difference
tree compared to an abstraction tree, the mean of all the features in a node is computed
to give the information content of a single node, and the mean of all the information
contents across nodes is computed to give the general information content of a tree.
This latter mean is also weighted by the mean entropy of the nodes, and by an added
coefficient that makes nodes lower in the tree less important than nodes in the upper
part of the tree (depth k in the formula below). The total formula is described below,
where p(diff tree feature) represents the probability p(v) (computed according to the
estimator 1) of the value v found for the considered feature f in the diff tree node.

ic(tree) =

∑
node∈tree ic(node) 1

ent(node) ∗ depth k(node)
∑

node∈tree
1

ent(node) ∗ depth k(node)
(2)

ic(node) =
∑

f∈node

− log2(p(diff tree feature))
ent(f)

(3)

ent(node) =

∑
f∈node ent(f)

number of features in node
(4)

ent(f) =
∑

v∈alphabet(f)

− log2(p(v))p(v) (5)

Figure 4 shows the results of the comparisons. Since computing the information
content of a piece included in the abstraction tree would be an unfair advantage, simi-
larly to the bias one would get by evaluating a machine learning model using the same
dataset that was used for learning the model, an approach similar to a k-fold validation
was used. The allemande corpus was split into four parts of 5 pieces, and the infor-
mation content of each piece was computed with respect to the abstraction trees built
solely on the 15 pieces outside the considered allemande’s group. This means that there
were actually four sets of abstraction trees built each on a different subset of 15 pieces.
The values for the other two groups (Jazz and Nottingham) were computed on all the
four sets and the mean is reported.
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Fig. 4. Comparison of the mean information content computed from each of the three sets of
twenty musical pieces. Mean refers to the mean of the trees of a single piece, rather than the
mean of an entire corpus.

The results clearly show that this approach is capable of detecting the structural
differences between the corpora. The allemandes show a strong structural regularity,
that is not found in the other pieces. As expected, the reels from the Nottingham dataset
are less unexpected than the jazz pieces, since they too have some structural regularities
that are not always found in jazz pieces. It is worth noting that being based on difference
trees, what this system captures is the general structure of the piece and how much
reuse of melodic material is present, rather than comparing for instance the regularities
in the melodies and how typical they are for each genre, possibly making this metric a
complementary indicator that could be used in combination with other approaches in
genre detection.

4 Conclusions

In this work, we have introduced a novel representation of musical content aimed at
encoding in a hierarchical manner features relating to musical structure. The approach
builds upon tree-based methods inspired by Schenkerian analysis, but adds additional
abstraction layers to describe regularities in a musical corpus rather than in a single
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piece. The final representation uses probability distributions, that can be analyzed using
tools from Information Theory as we show through two examples in the latter part of
the paper. The system as described here is capable of detecting regularities in a simple
allemande corpus, but the general approach can be adapted to a variety of specific algo-
rithms: the algorithm used for the construction of Schenkerian trees could be changed,
as well as the set of features used to compare them and build the Difference trees, po-
tentially adapting to different kinds of music and different analysis needs. One of the
biggest drawbacks of the current implementation is that it is based on a fixed window
length, making it harder to capture smaller structural features. An algorithm for seg-
mentation could be embedded in the system to detect the best subdivision of a piece,
but the general algorithm would need to be modified to adapt to segments of unequal
length.

Applying this approach to other structures opens interesting directions for future
works, but even keeping the system as presented now it is possible to further investigate
its applications. One of the motivations behind this work was to find descriptions of
music structure that can be used when generating computer-composed music. In this
scenario, Abstraction trees could offer a useful metric to describe how well a gener-
ated musical piece respects the typical structure of a certain style by computing the
Information Content in comparison with a goal corpus.

While this work is not meant to give a comprehensive descriptor of all musical as-
pects of a corpus, we believe that this contribution might help formalizing some aspects
of music that are sometimes overlooked in favour of more prominent aspects such as
melody, rhythm, and harmony.
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Abstract. Music is often described as melody and accompaniment, and several
MIR studies try to identify melodies. But the organization of voices is not lim-
ited to such a distinction between melody and accompaniment: Textural effects
– such as repeated notes, syncopes, homorhythmy, parallel moves or imitation
– underline the melody/accompaniment layout, and changes in texture usually
mark structural transitions in music. We investigate how textural and other char-
acteristics can help to identify melodic voices in polyphonic music. We select
measure-level features to analyze symbolic scores of string quartets, including
new textural features, and propose models to predict, on each measure, melodic
and accompaniment layers in such scores, each layer possibly including several
instruments. We evaluate these sets of features and the models on 12 movements
in Haydn and Mozart string quartets. The best models have an average accuracy
of more than 85%, taking into account both statistical and textural features.

1 Introduction

Melody, as the foreground of a musical material, is complex to define and characterize.
In string quartets, the first violin (Vln1), as a leading instrument, often plays the main
melody. However, the three other instruments of the quartet – second violin, viola, and
cello – can also join the melody or play it alone over time (Figure 1).

Melody Detection. Research on melody extraction is an active field in the audio do-
main [23, 8, 14]. In the symbolic domain, studies investigated the melodic content of
monophonic phrases and patterns through the lens of melodic similarity [31], melodic
segmentation [1, 19, 29, 30], and contour analysis [25, 24].

Concerning the particular question of identifying the melody in a polyphonic score,
Uitdenbogerd and Zobel [28] proposed several algorithms identifying the melodic line
in polyphonic MIDI files, including the simple skyline algorithm that labels as melody
the highest pitch at each onset. Rizo et al. proposed a set of statistical descriptors ex-
tracted from each track of MIDI files of different music styles (classical, jazz and pop)
and trained a random forest classifier to identify melody tracks in these pieces [22].
� This work is partially funded by French CPER MAuVE (Région Hauts-de-France).
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19-20: mel / acc / acc 21-22: mel / acc / acc
Vln1 / Vln2,Vla / Vla Vln2,Vla / Vln1 / Vc

Fig. 1. Haydn, Quatuor op. 33/1, I, mes. 19-22. The texture is described for each measure – even
if the melodies are not stricty aligned on measures boundaries. On mesures 21-22, the role of the
first violin may be debated, but the main melody is played on the second violin and on the viola,
mostly in parallel move in sixths.

Madsen et al. proposed an algorithm for predicting melody notes at any point of the
piece, based on a sliding window rendering the complexity of the musical lines [17].
One limitation is that they assume that there is only one melodic line at a time and they
reported that the skyline algorithm was still better performing on one Haydn string quar-
tet. They also use this method to identify the melody track in two datasets of popular
music [16]. These first results show that assessing complexity may help the recognition
of the melody. Friberg et al. tried to recognize the main melody in a polyphonic sym-
bolic score on ringtones of popular music [7], using Huron’s perceptual principles [11].
Some of the features they use are derived from symbolic data but intend to model audio
features, such as timbre, staccato/legato, or sound level.

Texture and Melody. The role of texture has long been recognized in music theories
[15, 13], but systematic, formalized, or computed analyses of texture remain few. In
1960, Nordgren quantified some aspects of the orchestral texture [20]. In 1982, Rahn,
discussing the melody identification in polyphonies, argues that a melody “stands out”
from its accompanying parts largely on the basis of its complexity [21]. In 1989, Huron
discussed the semantics of the term “texture” and proposed measures to evaluate the
textural diversity of music [10].

Several studies focused on the segregation of polyphonic music voices or streams, as
a listener might perceive them [2, 3, 26]. Duane’s thesis [6] further proposed to charac-
terize texture in string quartets by grouping the notes in streams perceived by listeners
and by characterizing the role of these streams. He described three roles: main lines
(including melodies), secondary lines and accompaniment. He established by statistical
methods that the perception of textural flows was mainly related to note synchronicity,
coordinated pitch modulation (especially parallel movements), as well as the presence
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of certain harmonic intervals (metricity, rhythmic repetition, rhythmic patterns, melodic
contour, and harmony do not seem to have a significant role).

We previously proposed to describe texture with layers, each one determined ac-
cording to its role and qualified according to its composition [9]. At the first level, lay-
ers are mainly qualified as melody, accompaniment, or other minor roles. One melodic
layer may include several instruments, and there can be two melodic layers. At the
second level, layers can be tagged as repeated notes, syncopation, sustained notes, im-
itation, and homorhythmy, which can be refined by a complementary descriptor in the
case of parallelism, unison, or octave.

Outline. Several textures are more specifically used for rhythmic or accompaniment
parts (as repetitions, homorhythmies, or syncopes) or are indicators of some relation-
ship between two voices or more. However, no MIR studies have linked such textures
to the analysis of melodic and accompaniment layers. Our goal here is to improve the
analysis of textures in symbolic scores, notably the melody/accompaniment detection,
focusing on string quartets, where melody is often taken by other instruments than
the first violin. We aim to improve the understanding of interactions between instru-
ments and the changes in texture by determining melodic and accompaniment layers
more precisely. We select measure-level features to analyze symbolic scores of string
quartets, gathering existing features [22], and new textural features (Section 2). We in-
troduce models to predict melodic and accompaniment layers based on such features
(Section 3). We evaluate these sets of features and the models on a set of 12 movements
in Haydn and Mozart string quartets and discuss these results (Section 4).

2 Measure-level Features for Melody Detection

To predict whether a measure is melody or accompaniment, we use the following set of
features computed on each measure.

2.1 Voice Name (4)

These features enable the (baseline) skyline algorithm, considering that the top voice is
the melody.

– (voice-name): 4 binary features, activated depending on the voice (first violin, sec-
ond violin, viola, cello)

2.2 Statistical Features (20)

The features introduced by Rizo et. al were used to predict, on the whole piece, which
track is the melody between all tracks [22]. They are linked to music properties that
can make what is a melody or what is an accompaniment (see Section 4.2). We com-
puted here these features on each measure. They are grouped in 5 categories: track
information (normalized duration, number of notes, occupation rate, polyphony rate),
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String Quartet in B Minor
1

Haydn, Franz Joseph
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Fig. 2. Detection of individual textures in measures 19-23 of String Quartet op. 33-1, 1st move-
ment by Haydn (see also Figure 1). The colors show the related voices for textures i/h/p.

pitch (highest, lowest, mean, standard deviation), pitch intervals (number of different
intervals, largest, smallest, mean, standard deviation), note durations (longest, short-
est, mean, standard deviation), and syncopation (number of syncopated notes). We also
added the number of repeated notes.

2.3 Textural Features (7 × 16 + 1)

To further describe the music texture, we propose a new set of high-level features de-
scribing the organization of notes and voices. The taxonomy of [9] introduced several
textures but proposed an algorithm only for homorhythmic layers. Inspired by this tax-
onomy, we design here the following binary features, that can be computed on every
note:

– repeated notes (r): We consider as repeated notes sequences of at least three succes-
sives notes of the same pitch and the same duration, for a total duration of at least
one beat and a half, possibly spaced with rests of at most one beat.

– syncopes (s): A note is considered as a syncope if it starts on a weak beat or on a
second half of any beat and continues on at least the next beat.

– homorhythmy (h): Two voices are considered as homorhythmic when they play
only notes starting and ending at the same time during at least three beats.

– parallel moves (p): Two homorhythmic voices are considered in a parallel move
when at least three close pairs of notes have the same diatonic interval – generally
thirds, sixths, or octaves or unison.

– imitation (i): We consider as imitation the repetition of a pattern on some voice,
called the original pattern, by another voice with some delay. This can be seen
as a parallel move delayed in time. This is computed by a simplification of the
Mongeau-Sankoff algorithm [18] requiring here five exact notes or more approxi-
mate matches.
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– rest (rest): There is no note, but a rest.
– The feature (none) is added when none of the previous six features is activated with

the given sixteenth.

On a given measure, these 7 features are actually computed on each of the 16 six-
teenth notes – the considered corpus being in 4/4, see next section. For each sixteenth
note, a vector gives the features that are activated, taking into account an expansion rule
– that is including notes that are still sounding but not attacked there. Moreover, the
following summarizing feature is added on each measure:

– texture ratio: number of sixteenths on which at least one of the textures is activated,
represented as a ratio between 0 and 1

Figure 2 shows an example of the heuristic detection of these textures. The predic-
tion of repeated notes (r) (such as some eights in measure 23) and homorhythmy (h) is
very reliable and would be here close to a manual annotation. The parallel move (p) is
correctly identified at measures 21-22. The imitation pattern (i) at measures 19-20 on
the first violin, that is later taken on the second violin and viola at measure 21-22, is
also correctly detected. However, a manual annotation would probably not set the same
boundaries for such annotations, for example by ending the homorythmy one note later
on the measure 20.

3 Learning Models: Melody/Accompaniment Prediction
as a Measure Classification Task

We see the melody/accompaniment prediction as a binary classification problem, given
the features presented in the previous section. We choose the measure granularity to be
consistent with the reference annotations. The statistical features were normalized into
a gaussian distribution (0 ± 1) and almost all the textural features are binary. Theses
vectors are gathered into a vector of maximal size 4 + 20 + (7 × 16 + 1) for each
measure, and a given melody or accompaniment class for the reference annotation.

3.1 Model Architecture
Two models were tested:

– A random forest (RF) classifier as used by [22], taking the average of a set of
200 decision trees trained on random subsets of features, where data are weighted
to account for the unbalanceness of categories.

– A simple neural network (NN) with an initial dropout layers with a rate of 0.5 to
reduce overfitting [27], 2 hidden fully connected linear layers (64 then 32), sep-
arated by relu activation layers and batch normalization layers, and a last layer,
composed of a unique neuron, with a sigmoid activation function and a threshold
of 0.5 between melody/accompaniment prediction. Weights were initialized uni-
formly. Batch size is 32 and the learning rate is 10−3, with early stopping after
50 iterations without improvement. To estimate errors at each iteration, the loss
function used is binary cross-entropy. The optimization of the gradients is done
with Adam [12].
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Haydn m % mel % Vln1 mel
17.1 i E Major 111 29.1 97.1
17.2 i F Major 101 30.9 81.6
17.3 iv Eb Major 70 34.1 73.1
33.1 i B minor 91 31.2 72.6
33.2 i Eb Major 90 34.9 93.5
33.3 i C Major 165 32.2 100.0
33.4 i Bb Major 83 35.7 98.3
50.1 i Bb Major 164 31.4 76.2

Mozart m % mel % Vln1 mel
No. 2, K. 155 i D Major 119 37.0 96.5
No. 4, K. 157 i C Major 126 45.6 80.8
No. 6, K. 159 i Bb Major 71 53.2 98.2
No. 14 K. 387 i G Major 171 29.5 86.7

Table 1. The corpus contains 12 movements of Haydn and Mozart string quartets, all in 4/4.
The last three columns give the number of measures (m), the ratio of measures (on the 4 voices)
labeled as melody, and the ratio of measures on the first violin labeled as melody.

4 Results

4.1 Corpus, Implementation, and Availability

The corpus includes 12 movements of string quartets by Haydn and Mozart (Table 1),
totaling 1362 measures, as .krn files. We extended the corpus of our previous study [9],
and we distribute the complete set of annotations as open data at www.algomus.fr/
data. Each measure on each of the four instruments was labeled as melody, accom-
paniment, or other. Only measures with melody and accompaniment were taken into
account, totaling 4791 measures. The files were processed with music21 [5], using ac-
tual pitch spelling (for example to compute intervals), and the learning models were
implemented with keras [4]. The code is available at www.algomus.fr/code.

4.2 Statistics on the Features

Figure 3 shows the distribution of some features over the measures labeled as melody
or accompaniment in the corpus.

As expected, the features on the pitch (highest, mean, and lowest), being very
similar to (voice-name), are very significant to tell apart the melodic and accompa-
niment parts. More interestingly, other features play a significant role, such as (num-
notes) (melody tends to have more notes) or (num-diff-int) (melody tends to use conjoint
intervals). In textural features, imitation and syncopes are significantly associated to
melody, whereas repeated notes are significantly associated with accompaniment. Ho-
morhythmy and its subset parallel moves are found in both roles, but parallel moves are
more used for melody.

4.3 Accuracy over a Leave-one-piece-out Strategy

We did not split these 4791 measures into a training set and a validation/test set: Indeed,
having different measures of the same piece in different sets would bring overfitting due
to repeats or similar sections inside each piece. Considering the relatively small size of
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Fig. 3. Distribution of some features in the 12 movements of the corpus, split into the measures
labeled as melody (Mel) or accompaniement (Acc) in the reference analysis. The data was nor-
malized in order that each of the area equals to 1. Top two lines: Some of the statistical features
introduced by [22]. Bottom two lines: Textural features on each sixteenth on each measure, tem-
poral barplot representing the proportions of a given sixteenth having one of these textures.
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base RF NN
Features all dm all all dm
Majority 65.4 19.0 – – –
Top (Vln1) 84.1 0.0 – – –
Statistics – – 78.9 81.9 51.9
Texture – – 69.1 72.3 52.8
Statistics + Texture – – 80.3 82.4 49.9
V. Name – – 84.3 84.2 0.0
V. Name + Texture – – 83.1 86.8 26.6
V. Name + Statistics – – 83.3 84.1 25.4
V. Name + Statistics + Texture – – 84.3 85.3 32.0

Table 2. Mean accuracy of the baseline models (base), as well of the Random Forest (RF) and the
neural network (MLP) on the leave-one-piece-out strategy and various sets of features, evaluated
on all measures but also on difficult measures (dm) i.e. where the first violin is not playing the
melody or another voice is playing it.

the corpus, we rather opted for a leave-one-piece-out strategy: Each piece is separately
considered as a validation set of a model trained on all other pieces. We iterate and
report the average accuracy over all the pieces.

As baseline models, we consider Majority (all measures are predicted as accompa-
niment) and Top (the first violin, as the top voice, is predicted as the melody – this is
equivalent than only considering the (voice-name) feature). Table 2 shows that the best
model is the NN taking into account the voice names and our proposed textural fea-
tures, with about 86.8% of correct predictions. As expected, the (voice-name) alone has
significant results – and this is confirmed by the baseline Top(Vln1), 84.1%. The statis-
tical features, even alone, have a good performance, but include features on pitch that
are very similar to (voice-name). Conversely, the textural features, without any feature
related to pitch, manage alone to identify 72.3% of the measures, including 52.8% on
difficult measures where the first violin is the voice playing the melody. Adding these
textural features to (voice-name) improves the accuracy.

We call difficult measures the 15.8% measures where melody is not at the first vi-
olin or shared between several instruments. The best model here correctly predicts the
melody in 32% of such measures.

4.4 Focus on Specific Cases

With the best model, the best results are on the first movement of Haydn 33.4 (96.1%),
this movement having melodies almost always played on the first violin (see Table 1).

Conversely, Figure 4 details the prediction on five difficult measures in a Mozart
quartet. On measures 27-29, the three voices are predicted as accompaniment, whereas
the reference annotation labels as melody the second violin. Although the melodic pat-
terns are about the same in measures 27, 30, and 31, it is worth noting that the prediction
on measure 27 is wrong, whereas on the measures 30 and 31, the model correctly pre-
dicts the melody in parallel moves (p) between one of the violins and the viola: The
textural information here helps in predicting the melody.
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Fig. 4. Textural features, reference annotation (top), and mel/acc prediction by the model NN
(bottom) on measures 27 to 31 from quatuor K387 by Mozart, first movement.

5 Conclusion and Perspectives

We evaluated sets of features and models to predict, on each measure, which instru-
ment(s) is playing a melodic content. Experiments on string quartets by Haydn and
Mozart show that some textural features are distributed differently in melodic and ac-
companiment parts, and that the best models detect some of the melodies beyond the
first violin or distributed among several instruments. This brings a new step towards
a general characterization of melody and texture in polyphonic pieces. Further stud-
ies could improve the features and the learning model, generalize such approaches to
more complex polyphonic works such as orchestral music, and study the correlation of
texture with other parameters such as harmony or form.
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Abstract. In this paper, predominant instrument recognition in polyphonic mu-
sic is addressed using convolutional recurrent neural networks (CRNN) through
Mel-spectrogram, modgdgram, and its fusion. Modgdgram, a visual represen-
tation is obtained by stacking modified group delay functions of consecutive
frames successively. Convolutional neural networks (CNN) learn the distinctive
local characteristics from the visual representation and recurrent neural networks
(RNN) integrate the extracted features over time and classify the instrument to the
group where it belongs. The proposed system is systematically evaluated using
the IRMAS dataset. A wave generative adversarial network (WaveGAN) archi-
tecture is also employed to generate audio files for data augmentation. We exper-
imented with two CRNN architectures, convolutional long short-term memory
(C-LSTM) and convolutional gated recurring unit (C-GRU). The fusion experi-
ment C-GRU reports a micro and macro F1 score of 0.69 and 0.60, respectively.
These metrics are 7.81% and 9.09% higher than those obtained by the state-of-
the-art Han’s model. The architectural choice of CRNN with score-level fusion on
Mel-spectro/modgd-gram has merit in recognizing the predominant instrument in
polyphonic music.

Keywords: predominant, Mel-spectrogram, modgdgram,convolutional gated re-
curring unit.

1 Introduction

Predominant instrument recognition refers to the problem where the prominent instru-
ment is identified from a mixture of instruments being played together [16]. In poly-
phonic music, the interference of simultaneously occurring sounds makes instrument
recognition harder. Automatic identification of lead instrument is important since the
performance of the source separation can be improved significantly by knowing the
type of the instrument [16].

Han et al. [16] employed Mel-spectrogram-CNN approach for instrument recog-
nition. Pons et al. [22] analyzed the architecture of Han et al. in order to formulate
an efficient design strategy to capture the relevant information about timbre. Detect-
ing the activity of music instruments using a deep neural network (DNN) through a
temporal max-pooling aggregation is addressed in [15]. Dongyan et al. [31] employed
a network with an auxiliary classification scheme to learn the instrument categories
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Fig. 1. Block diagram of proposed method of predominant instrument recognition.

through multitasking learning. Gomez et al. [14] investigated the role of two source
separation algorithms as pre-processing steps to improve the performance in the con-
text of predominant instrument detection tasks. In [18], the Hilbert-Huang transform
(HHT) is employed to map one-dimensional audio data into two-dimensional matrix
format, followed by CNN to learn the effective features for the task. In [17] an en-
semble of VGG-like CNN classifiers is trained on non-augmented, pitch-synchronized,
tempo-synchronized, and genre-similar excerpts of IRMAS for the proposed task.

The modified group delay feature (MODGDF) is proposed for pitched musical in-
strument recognition in an isolated environment in [9]. While the commonly applied
mel frequency cepstral coefficients (MFCC) feature is capable of modeling the reso-
nances introduced by the filter of the instrument body, it neglects the spectral character-
istics of the vibrating source, which also, play its role in human perception of musical
sounds and genre classification [12]. Incorporating phase information is an effective at-
tempt to preserve this neglected component. Some preliminary works on predominant
instrument recognition in polyphonic music using group delay functions are discussed
in [2, 1]. In [28] a multi-head attention mechanism is employed along with modified
group delay functions for proposed task.

In the proposed task, CRNN architecture with score level fusion of Mel-spectrogram
and modgdgram is used for recognizing predominant instruments in polyphonic music.
Similar approaches combining CNNs and RNNs have been presented recently in many
music processing applications [6], [5], [20]. The idea of including modified group delay
functions and GAN-based data augmentation strategy are the main contributions of the
proposed scheme.

Section 2 explains the system description. Feature extraction is described in Section
3, followed by the model architectures in Section 4. The performance evaluation is
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Table 1. Model summary of CNN and CRNN architectures.(* represents the multiplication factor,
di,fi,hi,ji represents the number of filters used in the networks. (di=8,16,24,32,64,128,256,512),
(fi=32,64,128,256), (hi=8,16,32,64,128,256), (ji=32,64,128).

Mel-spectrogram-
CNN

Modgdgram-
CNN

Mel-spectrogram-
CRNN

Modgdgram-
CRNN*

x4 2 X Conv2D
(3x3) , di

Conv2D
(3x3), fi

*
x3 2 X Conv2D

(3x3) , hi

Conv2D
(3x3), ji

Leaky ReLU
( α = 0.33)

ReLU Leaky ReLU
( α = 0.33)

ReLU

3x3 Max-pooling,stride (3,3) Batch Normalization
Dropout (0.25) 2x2 Max-pooling,stride(2,2)

Global Max-pooling Flatten (1024)
Dense (1024) Dense(512) 2 X Bidirectional

LSTM / GRU (32 units)
Dropout (0.5) Flatten (1024)

Dense (11), Softmax Activation Dense (512)
Batch Normalization, Dropout (0.5)

Dense (11), Softmax Activation

described in Section 5. The results are analyzed in Section 6. The paper is concluded in
Section 7.

2 System Description

The proposed scheme is shown in Fig. 1. In the proposed model, CRNN is used to learn
the distinctive characteristics from Mel-spectro/modgd-gram to identify the leading in-
strument in a polyphonic context. We evaluate the proposed method on the IRMAS
dataset and compare its performance to CNN and two variants of RNN-long short-term
memory (LSTM) and gated recurring unit (GRU). The performance is also compared
with a DNN framework. As a part of data augmentation, additional training files are
generated using WaveGAN. During the testing phase, the probability value at the out-
put nodes of the trained model is treated as the score corresponding to the input test
file. The input audio file is classified to the node which gives the maximum score dur-
ing testing. In the fusion framework, the individual scores of Mel-spectro/modgd-gram
experiments are fused at the score-level to make a decision. The fusion score Sf , is
obtained by,

Sf = βSspectro + (1− β)Smodgd (1)

where Sspectro, Smodgd, β are the Mel-spectrogram score, modgdgram score and weight-
ing constant, respectively. The value of β has been empirically chosen to be 0.5. Each
phase is explained in detail in the following sections.
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3 Feature Extraction

Mel-spectrogram and modgdgram are the inputs used in the proposed scheme. Mel-
spectrogram approximates how the human auditory system works and can be seen as
the spectrogram smoothed, with high precision in the low frequencies and low precision
in the high frequencies [21]. It is computed with a frame size of 50 ms and a hop size
of 10 ms with 128 bins for the given task.

Group delay features are being employed in numerous speech and music process-
ing applications [24, 26, 23, 25]. The group delay function is defined as the negative
derivative of the unwrapped Fourier transform phase with respect to frequency. Modi-
fied group delay functions (MODGD), τm(ejω) are obtained by,

τm(ejω) = (
τc(e

jω)

|τc(ejω)|
)(|τc(ejω)|)a, (2)

where,

τc(e
jω) =

XR(e
jω)YR(e

jω) + YI(e
jω)XI(e

jω)

|S(ejω)|2b
. (3)

The subscripts R and I denote the real and imaginary parts, respectively. X(ejω),
Y (ejω) and S(ejω) are the Fourier transforms of signal, x[n], n.x[n] ((weighted signal
with index), and the cepstrally smoothed version of X(ejω), respectively. a and b (0 <
a, b≤ 1 ) are introduced to control the dynamic range of MODGD [19, 23]. Modgdgram
is the visual representation of MODGD with time and frequency in the horizontal and
vertical axis, respectively. The amplitude of group delay function at a particular time is
represented by the intensity or color in the third dimension. Modgdgrams are computed
with a frame size of 50 ms and hop size of 10 ms using a and b values of 0.9 and 0.5
respectively.

4 Model Architectures

CNNs and RNNs are specific instances of the CRNN architecture presented in this sec-
tion: A CNN is a CRNN with zero recurrent layers, and an RNN is a CRNN with zero
convolutional layers. CNN uses a deep architecture similar to [16] with repeated convo-
lution layers followed by max-pooling. The detailed architecture for Mel-spectrogram
and modgdgram CNN and CRNN are shown in Table 1.

RNNs are introduced to handle sequence and time-series data and are well suited
for various speech and music-related applications [27], [13]. RNN with sophisticated
recurrent hidden units like LSTM and GRU is used because such structures are capable
of alleviating the vanishing gradient problem. The designed RNN consists of one input
layer, two hidden layers which include two LSTM or GRU layers each with 32 nodes,
and an output dense layer with eleven nodes for output classes. ReLU activation is used
for hidden layers and softmax is used for the output layer.

In order to benefit from both approaches, the two architectures can be combined into
a single network with convolutional layers followed by recurrent layers, often referred
to as CRNN. The CRNN makes use of the CNN architecture for the task of feature ex-
traction while using LSTM and GRU placed at the end of the architecture to summarise
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the temporal information of the extracted features. The main drawback of CNNs is it
lacks longer temporal context information. However, RNNs do not easily capture the
invariance in the frequency domain, rendering high-level modeling of the data more dif-
ficult [5]. In the C-LSTM and C-GRU architectures, batch normalization is employed
after convolutional layers to improve the training speed and performance. Two bidi-
rectional LSTM/GRU units are connected after the time-distributed flatten layer. The
bidirectional RNN is preferred rather than unidirectional RNN since it considers the
future timestamp representations also [8]. The CNN and CRNN networks are trained
using Adam optimizer with a learning rate of 0.001.

Fig. 2. Visual representation of an audio excerpt with acoustic guitar as leading, Mel-spectrogram
of original and WaveGAN-generated (Upper pane left and right). Modgdgram of original and
WaveGAN-generated (Lower pane left and right).

A DNN framework on musical texture features (MTF) is also experimented with to
examine the performance of deep learning methodology on handcrafted features. MTF
includes MFCC-13 dim, spectral centroid, spectral bandwidth, root mean square en-
ergy, spectral roll-off, and chroma STFT. The features are computed with a frame size
of 40 ms and a hop size of 10 ms using Librosa framework 1. DNN consists of seven
layers, with increasing units from 8 to 512. ReLU has been chosen for hidden layers

1https://librosa.org/doc/latest/tutorial.html
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and softmax for the output layer. The network is trained using categorical cross-entropy
loss function for 500 epochs using Adam optimizer with a learning rate of 0.001.

5 Performance Evaluation

5.1 Dataset

IRMAS dataset [11], comprising eleven classes, is used for the evaluation. The classes
include cello (Cel), clarinet (Cla), flute (Flu), acoustic guitar (Gac), electric guitar
(Gel), organ (Org), piano (Pia), saxophone (Sax), trumpet (Tru), violin (Vio) and human
singing voice (Voice). The training data are single-labeled and consists of 6705 audio
files with excerpts of 3 s from more than 2000 distinct recordings. On the other hand,
the testing data are multi-labeled and consist of 2874 audio files with lengths between
5 s and 20 s and contain the presence of multiple predominant instruments.

5.2 Data Augmentation using WaveGAN

WaveGAN v2 is used here to generate polyphonic files with the leading instrument re-
quired for training. WaveGAN is similar to DCGAN, which is used for Mel-spectrogram
generation, in various music processing applications. The transposed convolution oper-
ation of DCGAN is modified to widen its receptive field in WaveGAN. For training, the
WaveGAN optimizes WGAN-GP using Adam for both generator and discriminator.
A constant learning rate of 0.0001 is used with β1 = 0.5 and β2 = 0.9 [10]. Wave-
GAN is trained for 2000 epochs on the three sec audio files of each class to generate
similar audio files and a total of 6585 audio files with cello (625), clarinet (482), flute
(433), acoustic guitar (594), electric guitar (732), organ (657), piano (698), saxophone
(597), trumpet (521), violin (526) and voice (720) are generated. The generated files are
denoted by Traing and training files available in the corpus are denoted by Traind.
Mel-spectrogram and modgdgram of natural and generated audio files for acoustic gui-
tar are shown in Fig. 2. The experiment details and a few audio files can be accessed at
https://sites.google.com/view/audiosamples-2020/home/instrument

The quality of generated files is evaluated using a perception test. It is conducted
with ten listeners to assess the quality of generated files for 275 files covering all classes.
Listeners are asked to grade the quality by choosing one among the five opinion grades
varying from poor to excellent quality (scores, 1 to 5). A mean opinion score of 3.64
is obtained. This value is comparable to the mos score obtained in [10] and [3] using
WaveGAN.

5.3 Experimental Set-up

The experiment is progressed in three phases namely Mel-spectrogram-based, modgd-
gram-based, and score-level fusion-based. Han’s sliding window baseline model [16] is
implemented for the given experiment with 1 s slice length for performance compari-
son 2. We used the same aggregation strategy (S2) as that of Han’s model, by summing

2https://github.com/Veleslavia/EUSIPCO2017
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Table 2. F1 score for the experiments with data augmentation (Traind + Traing).

SL.
No

Class MTF
DNN

Han’s
Model

Fusion
CNN

Fusion
LSTM

Fusion
GRU

Fusion
C-LSTM

Fusion
C-GRU

F1 F1 F1 F1 F1 F1 F1

1 Cel 0.15 0.55 0.55 0.15 0.36 0.42 0.50
2 Cla 0.26 0.18 0.36 0.13 0.36 0.48 0.39
3 Flu 0.27 0.43 0.55 0.32 0.62 0.34 0.31
4 Gac 0.43 0.72 0.63 0.44 0.54 0.51 0.70
5 Gel 0.36 0.69 0.67 0.50 0.49 0.62 0.74
6 Org 0.28 0.45 0.55 0.37 0.49 0.66 0.51
7 Pia 0.36 0.67 0.62 0.50 0.57 0.78 0.78
8 Sax 0.28 0.61 0.58 0.25 0.55 0.47 0.50
9 Tru 0.18 0.44 0.65 0.33 0.62 0.43 0.60

10 Vio 0.22 0.48 0.68 0.38 0.49 0.64 0.69
11 Voice 0.32 0.85 0.73 0.60 0.58 0.85 0.88

Macro 0.28 0.55 0.60 0.36 0.52 0.56 0.60
Micro 0.32 0.64 0.65 0.43 0.55 0.65 0.69

all the softmax predictions followed by normalization and applying a threshold of 0.5.
Mel-spectrograms and modgdgrams of input size 128x100x1, corresponding to a win-
dow size of 1 s are applied to the corresponding network. The experiments are repeated
for CNN, RNN with LSTM and GRU, CRNN with C-LSTM, and C-GRU respectively.
Since the number of annotations for each class was not equal, we computed precision,
recall, and F1 measures for both the micro and the macro averages. For the micro av-
erages, we calculated the metrics globally, thus giving more weight to the instrument
with a higher number of appearances. On the other hand, we calculated the metrics for
each label and found their unweighted average for the macro averages.

6 Results and Analysis

Several studies [30, 29] have demonstrated that by consolidating information from mul-
tiple sources, better performance can be achieved than uni-modal systems which moti-
vated us to perform the score-level fusion. The standard metrics for various algorithms
on the IRMAS corpus are reported in Table 3. Fusion network C-GRU achieved mi-
cro and macro F1 measures of 0.69 and 0.60, respectively, which is 7.81% and 9.09%
higher than those obtained for the state-of-the-art Han’s model. Han employed Mel-
spectrogram-CNN for the proposed task. Conventionally, the spectrum-related features
used in instrument recognition take into account merely the magnitude information.
However, there is often additional information concealed in the phase, which could be
beneficial for recognition [9]. The experimental results validate the claim in [9]. Our
Fusion-CNN with data augmentation reports a micro and macro F1 score of 0.65 and
0.60 respectively which is 1.56% and 5.26% higher than that obtained for our Mel-
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Table 3. Performance comparison on IRMAS dataset

SL.No Model F1 Micro F1 Macro
1 Bosch et al. [4] 0.50 0.43
2 Han et al. [16] 0.65 0.50
3 Pons et al. [22] 0.65 0.52
4 Kratimenos et al. [17] 0.65 0.55
5 MTF-DNN (Traind + Traing) 0.32 0.28
6 Han Model (Traind + Traing) 0.64 0.55
7 Proposed Mel-spectrogram-CNN (Traind + Traing) 0.64 0.57
8 Proposed Modgdgram-CNN (Traind + Traing) 0.54 0.53
9 Proposed Fusion-CNN (Traind + Traing) 0.65 0.60

10 Proposed Fusion-C-LSTM (Traind + Traing) 0.65 0.56
11 Proposed Fusion-C-GRU (Traind) 0.62 0.53
12 Proposed Mel-spectrogram-C-GRU (Traind + Traing) 0.66 0.59
13 Proposed Modgdgram-CGRU (Traind + Traing) 0.55 0.53
14 Proposed Fusion-C-GRU (Traind + Traing) 0.69 0.60

spectrogram-CNN with data augmentation. It is evident that modgdgram added com-
plementary information to the spectrogram approach and the importance of the fusion
framework for the proposed task. Han’s model and the proposed Mel-spectrogram-CNN
approach show similar performance with better performance for the proposed architec-
tural choice.

The F1 score of different fusion experiments is tabulated in Table 2. Fusion experi-
ments using RNNs alone do not show improved performance over existing algorithms,
however, GRU shows better performance than LSTM. Since we employed the same
number of hidden units for both, GRU required less number of trainable parameters
and makes faster progress, and reaches the convergence earlier than LSTM. Fusion ex-
periments C-LSTM and CNN show similar performance, but C-GRU outperforms all
the models. GRUs train faster and computationally more efficient than LSTM because
of fewer trainable parameters. Results of the experiments described in [7] suggest that
GRUs perform better than LSTMs on small polyphonic dataset [7]. Our C-LSTM for
Mel-spectrogram requires 100224 more trainable parameters compared to C-GRU. It
reaches convergence faster without compromising accuracy. The experimental results
validate the claim in [7].

Our best model Fusion C-GRU, without data augmentation (Traind) reports micro
and macro F1 score of 0.62 and 0.53 respectively. Fusion C-GRU (Traind + Traing)
reports micro and macro F1 scores of 0.69 and 0.60, respectively, with an improvement
of 11.29% and 13.21% higher than that obtained by Fusion C-GRU (Traind). This
shows the significance of data augmentation in the proposed task.

Our proposed CRNN technique outperformed existing algorithms on the IRMAS
dataset for both the micro and the macro F1 measures. The analysis of the experimental
frameworks shows the significance of CRNN architecture for the proposed task. Be-
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sides, the experiments show the potential of fusion of magnitude and phase information
in the proposed task.

7 Conclusion

We presented a CRNN-based predominant instrument recognition system using Mel-
spectro/modgd-gram. CRNN is used to capture the instrument-specific characteristics
and then do further classification. The proposed method is evaluated on IRMAS dataset.
Data augmentation is also performed using WaveGAN. The results show the potential
of C-GRU architecture on the score-level fusion of Mel-spectrogram and modgdgram
in the proposed task.
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Abstract. This paper describes the temporal model of a scheduler geared to-
wards show control and live music applications. This model relies on multiple
inter-related temporal axes, called timescales. Timescales allow scheduling com-
putations using abstract dates and delays, much like a score uses symbolic posi-
tions and durations (e.g. bars, beats, and note values) to describe musical time.
Abstract time is ultimately mapped onto wall-clock time through the use of time
transformations, specified as tempo curves, for which we provide a formalism
in terms of differential equations on symbolic position. In particular, our model
allows specifying tempo both as a function of time or as a function of symbolic
position, and allows piecewise tempo curves to be built from parametric curves.

Keywords: Symbolic time, Time transformations, Tempo curves, Scheduling

1 Introduction

Timing is of utmost importance in performing arts. Among them, music has developed
particularly fine-grained temporal constructs, using both continuous and discrete ab-
stract representations of time. As such, it presents specific and interesting challenges
with regard to the composition and interpretation of time at multiple scales, and across
multiple independent time-flows.

In this paper we present the temporal model of Jiffy, a polytemporal scheduler which is
part of an ongoing effort to build a programmable show-controller system for perform-
ing arts and interactive multimedia installations1. In particular, our temporal model al-
lows specifying tempo either as a function of time or as a function of symbolic position,
and allows piecewise tempo curves to be built from parametric curves such as Béziers
curves, which are both versatile and intuitive. The scheduler exposes an interface based
on fibers, that makes it easy to organize inter-dependant streams of related events.

We first highlight the importance of symbolic time in musical applications (section 2).
We then cover the notion of time transformations, and give a differential equation for-
mulation to tempo curves (section 3). We then show how tempo curves equations are
solved in Jiffy (section 4). Finally, we present the interface of the scheduler (section 5).

1 The source code of the scheduler as of the time of writing can be found at
https://github.com/martinfouilleul/jiffy_scheduler_standalone/
tree/fff78cd5ca6ab895ba3107439e8ac9541811590a.
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2 Symbolic Time in Musical Applications

2.1 Common Paradigms in Show-Control Applications

Show controllers are programs used by sound and lighting engineers to create and run
temporal scenarios synchronized to the actions of performers on stage. They allow users
to launch sound and video samples, control mixing and lighting desks, operate motors
for mechatronic stage props, and so on. Several approaches can be identified as to how
they present and organize the temporal relations between the cues of the show:

– Timelines, which organize cues on a common, static time axis. Most sequencers,
such as ProTools2 or Cubase3 fall in that category.

– Cuelists, which organize cues in nested lists with associated timing semantics. No-
table examples are QLab4 or Linux Show Player5.

– Hybrid models offer both cuelists and timelines, either through separate modes of
operation, as in Medialon6 or Smode7, or as dual views of the same cues, as in
Ableton Live8.

– Graphical planning environments that allow users to position cues in some abstract
space, which maps to time through the use of trajectories, as in Iannix [6], or flow
graphs, as in Ossia Score [5].

Despite the diversity of approaches, most show controllers lack an abstract notion of
musical time, as they directly map cues to wall-clock dates or to external triggers. Fur-
thermore, musical time is often deployed throughout a work at different scales (e.g.
movements, phrases, cells, notes. . . ), and not every scale is tied to the same global
tempo, e.g. ornaments such as grace notes and appogiatura are not affected in the same
way by a change of tempo as a main melody line. Hence it would be more appropriate
to consider several abstract musical times, or timescales.

2.2 Abstract Timescales

The above discussion emphasizes the need of strong temporal models in composition
and performance softwares and highlights the adequacy of polytemporal abstract time
scheduling, i.e. the ability to organize concurrent computations along multiple logical
timescales, that can later get mapped to wall-clock time.

2 https://www.avid.com/pro-tools
3 https://new.steinberg.net/cubase/
4 https://qlab.app/docs/QLab_4_Reference_Manual.pdf
5 https://linux-show-player-users.readthedocs.io/en/latest/
index.html

6 https://medialon.com/wp-content/uploads/2019/07/
M515-1-Medialon-Control-System-Manual.pdf

7 https://smode.fr
8 https://www.ableton.com/en/live/what-is-live/
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The notion of abstract timescales has been tackled before by computer music environ-
ments or score followers. For instance, FORMULA [1] allows applying independent
time deformations on groups of concurrent tasks. David A. Jaffe [9] proposed a recur-
sive scheduler for hierarchical timing control, using explicit time maps. Antescofo [7]
allows users to compose independent abstract times through the use of time scopes and
tempo curves.

In Jiffy, a timescale is a data structure used to maintain a notion of logical time, ex-
pressed as a rational number of symbolic time units9 (STU), and to schedule events at
specific logical dates. It is analogous in this respect to a score, which organizes musical
events in terms of a musical time, that needs to be translated into wall-clock time by a
musician according to tempo indications and interpretative choices.

Fig. 1. Composing time deformations using tempo curves.

However, whereas the tempo indication of a score usually prescribes some idealized
mapping from musical-time to wall-clock time, a timescale’s logical time does not nec-
essarily map directly to wall-clock time. Instead, each timescale has a time source,
which can be either the wall-clock time or another timescale. A timescale is also as-
sociated with a time transformation, which maps its internal time to the time of its
source. Thus, the scheduler can handle multiple notions of logical time and map dates
to wall-clock time through a hierarchy of time transformations.

Figure 1 illustrates a time deformation between a timescale and its source. The time
map plots for each timescale show the position of the timescale with respect to wall-
clock time. The effect of the first tempo curve (tempo 1) is to warp the time map of

9 We deliberately avoid the term beats here. We think it would bring some confusion by con-
flating the notion of time unit with the notion of meter, and by suggesting that all beats are of
equal conceptual length. This is, in fact, rather a Western exception than a universal norm.
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timescale 0 (which represents wall-clock time) into that of timescale 1 (which represent
some abstract musical time). Timescale 1 is then transformed by another another tempo
curve (tempo 2), to produces the time map of timescale 2.

3 Time Transformations

Jiffy’s scheduler must be able to transform timescale-local positions to and from wall-
clock time. These transformations are specified by the means of tempo curves, which
describe the speed of a timescale’s “playhead” with respect to the source time, much
like tempo indications in a score prescribe an idealized conversion from durations in
beats to durations in wall-clock time10.

Several methods have been proposed to represent time transformations and to integrate
tempo curves to map symbolic position to time. Jaffe [9] proposes to directly use time
maps constructed from a collection of predefined time warping functions. Berndt [2]
chooses to represent tempo curves by potential functions of symbolic position, match-
ing some specified mean tempo condition. Timewarp [10] is a tool that uses regularized
beta functions to define tempo curves satisfying polyrhythmic constraints. Antescofo
uses a variety of tweening functions11 to express tempo as a function of time, and uses
closed form expressions to compute time transformation based on tempo curves. When
there is no analytical solution to a tempo curve integration, Antescofo samples the curve
to produce a piecewise linear approximation, which is then integrated analytically. An-
tescofo can also use arbitrary expressions to define tempo, although these expressions
are not integrated: they are reevaluated each time a variable is updated, and considered
constant between updates. As such, they can only represent tempo as step functions.

In Jiffy, we allow users to specify a tempo curve either as a function of a timescale’s
source time, or as a function of symbolic position (which is closer to the way tempo is
specified in a score). We use piecewise tempo curves where each piece can be defined
by parametric curves. A variable-step numerical method is used to integrate the tempo
curves when simple analytical solutions are not readily available.

3.1 Differential Equation Formulation

In the following we will use the variable p to denote the position in a timescale, i.e. the
logical time in this timescale’s reference frame. The variable t will be used to denote
the source time (or simply, time), i.e. the time in the timescale’s parent reference frame
(which could be the wall-clock time).

The function position function, P (t), transforms the source time into the internal posi-
tion of the timescale. The time function, T (p), transforms the position into the source
time. Obviously, P = T−1.

10 One difference, however, is that we use the word tempo here to refer to the ratio of internal
STUs over source STUs, rather than the number of beats per minutes, since the latter could
depend on the musical meter of the timescale.

11 https://antescofo-doc.ircam.fr/Reference/compound_curve/



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

199

A tempo curve T can be either a function of time or position. It maps its parameter to
the value of the derivative of the position function at this instant. In the following we
will refer to a tempo curve defined as a function of position as an autonomous tempo
curve, whereas a tempo curve defined as a function of time will be referred to as a non-
autonomous tempo curve. This naming stems from the formulation of the tempo curve
as the right-hand side of an autonomous or non-autonomous differential equation:

dP

dt
(t) = T (P (t)) (autonomous) , or

dP

dt
(t) = T (t) (non autonomous) ,

with initial condition P (0) = 0 .

(1)

4 Tempo Curves Integration

Tempo curves in Jiffy are defined as piecewise functions. For the sake of brevity, we
may refer to an interval and its associated sub-function as a tempo curve segment, or
simply as a curve, where the meaning should be clear from context. Each segment
is defined by a start tempo and an end tempo, a duration, an interpolation mode and
optional interpolation parameters. We implemented three interpolation modes, namely
constant, linear and parametric.

4.1 Integration of Constant and Linear Tempo Curves

Constant and linear tempo curves can be solved analytically. We show below the differ-
ential equation of tempo, and the position and time functions for each case.

Constant Tempo.
T (p) = T 0 . (2)

T (p) =
p

T 0
, P (t) = t× T 0 . (3)

Autonomous Linear Tempo.

T (p) = T 0 + αp , where α =
T 1 − T 0

L
. (4)

P (t) =
T 0

α
(eαt − 1) , and T (p) =

1

α
log(1 +

αp

T 0
) . (5)

Non-autonomous Linear Tempo.

T (t) = T 0 + αt , where α =
T 1 − T 0

L
. (6)

P (t) = T 0t+
α

2
t2 , and T (p) =

√
T 2

0 + 2αp− T 0

α
. (7)
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Numerical Considerations Some of the above time and position functions are inde-
terminate forms for α → 0. To avoid that problem, we approximate these expressions
by a series expansions in α when |α| is smaller than a given threshold. For instance, our
approximation of the position function for the autonomous case when is |α| < 10−9 is:

P (t) ≈ T 0(t+
α

2
t2 +

α2

6
t3 +

α3

24
t4 +

α4

120
t5) . (8)

4.2 Parametric tempo curves.

In this section we will give a definition of a parametric tempo curve, and show the
differential equations that need to be solved in order to compute the time and position
functions. These equations are then solved by a numerical solver.

An autonomous (resp. non-autonomous) parametric tempo curve segment is defined as
a function C of the position p (resp. of the time t), which describes the same curve in
the plane (p,T ) (resp. (t,T )) as a parametric curve B(s) with components Bx(s) and
By(s).

Autonomous Parametric Tempo. The differential equation corresponding to an au-
tonomous tempo curve can be written as

dP

dt
(t) = C(P (t)) . (9)

Position function P (t). The derivative of the position with respect to time is directly
expressed by the autonomous tempo curve,

dP

dt
(t) = By(s) , where s = B−1

x (P (t)) . (10)

Time function T (p). We operate the change of variable s = B−1
x (p) on Equation 9.

Finding the time function is then a matter of solving the differential equation

dT̃

ds
(s) =

B′
x(s)

By(s)
, with T̃ (s) = T (p) . (11)

Non-autonomous Parametric Tempo. The definition of the non-autonomous para-
metric tempo curves can be written as

dP

dt
(t) = C(t) . (12)

Position function P (t). Using the change of variable s = B−1
x (t) and the chain rule,

we can write the differential equation for the position function as

dP̃

ds
(s) = By(s)B

′
x(s) , with P̃ (s) = P (t) . (13)



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

201

Time function T (p). Using the formula for the derivative of inverse functions on Equa-
tion 12, we get

dT

dp
(p) =

1

C(T (p))
=

1

By(s)
, where s = B−1

x (T (p)) . (14)

Numerical Resolution. Although some of the above equations can be solved analyti-
cally, using a numerical solver has the advantage of allowing us to control the tradeoff
between accuracy and speed, and opens up the possibility of supporting other arbitrary
functions to define tempo curves. We use a Cash-Karp [4] solver to numerically solve
the tempo curve equations. We follow the general architecture proposed in [11], op-
timized further by leveraging the fact that these equations are either autonomous or
directly integrable.

Bézier Tempo Curves. The above formulation allows the use of any parametric curve,
provided that it describes a derivable, non null function. Our specific implementation
uses cubic Bézier curves, which are especially versatile, as they allow putting con-
straints on both endpoints and their first derivative, while ensuring that the curve re-
mains contained inside its control points’ convex hull. They are also intuitive to manip-
ulate and map well to the curve-editing interfaces commonly used in animation, audio,
and video applications.

An autonomous (resp. non-autonomous) Bézier tempo curve segment is defined by the
parametric curve

B(s) = C3s
3 +C2s

2 +C1s+C0 , (15)

where the Ci are the power basis coefficients computed from the Bézier curve’s control
points. To ensure that the curve describes a function, the cubic function Bx(s) must be
monotonous, i.e. if the xi are the abscissae of the Ci, the condition c21 − 3c0c2 ≤ 0
must hold.

Bézier curves evaluation. We should stress out that, although each coordinate of the
parametric Bézier curve is cubic with respect to its parameter s, the second coordinate
is not a cubic function of the first, i.e. the tempo is not a cubic function of position (resp.
time). Analytically finding the tempo for a given position (resp. time) indeed requires
solving a third order equation.

A faster method is to numerically find the parameter s for a given position (resp. time),
up to some desired precision, and then compute the tempo from s. Our implementation
first uses the Newton-Raphson root-finding method up to a fixed number of iterations,
and falls back to a bisection algorithm if either the value of the derivative falls behind
some threshold, or the desired precision is not reached within the maximum iteration
count.

An example of a time map produced by tempo curve composed of two Bézier segments
is shown in Figure 2. The blue curve shows position as a function of time. The orange
stems mark the timeline STUs. The red curve shows the tempo curve, as a function of
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Fig. 2. Time map and beats trace for a tempo curve defined by two Bézier curves.

time (on the left), or as a function of position (on the right). The figure is produced by
computing the positions corresponding to a regularly spaced time grid.

5 Scheduler Interface

The Jiffy scheduler is designed to run user code in fibers12. Compared to callback-
based scheduling APIs (such as [3], [13] or [12]), this doesn’t compel the user to break
down the control flow of their code into lots of small functions, keeps logically related
computations in the same local context, and allows users to easily express dependencies
between several workloads. Fibers can also be migrated between threads, allowing a
very streamlined way to handle blocking calls without hanging the scheduler.

The scheduler uses the notion of tasks to represent a group of fibers executing within the
same timescale. Tasks, like timescales, are organized in a parent-children relationship.
The API exposes functions to launch new tasks and fibers, to yield and reschedule the
current fiber to a future date, or to wait on the completion of other tasks or fibers. It also
features functions to move fibers into background jobs to perform blocking operations
without blocking the scheduler, and bringing them back to the foreground once done.

Listing 1.1 shows a simple example that launches a task to print a message at regular
symbolic intervals with a varying tempo. This task lives for 40 time units unless it is
canceled from another fiber, which waits for user input in the background.

6 Conclusion and Future Work

In this paper, we highlighted the need for symbolic time scheduling in show-control
software and musical applications. We then described a temporal model based on time

12 The notions of fiber, coroutine, or green thread are so closely related that the distinction be-
tween them, if any, is amenable to debate. One could argue that green thread is more appro-
priate in the context of a virtual machine or runtime environment, while coroutine originates
from programming language design. The term fiber may capture a more general view of the
concept.
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i64 my_task_proc(void* userPointer)
{

// main task: print a message at each symbolic time unit
for(int i=0; i<40; i++)
{

printf("Hello, world: %i\n", *count);
sched_wait(1);

}
return(0);

}

i64 user_cancel_fiber(void* userPointer)
{

// go to background so we don’t block the scheduler, and wait user input,
// then bring the fiber to the foreground and cancel the main task
sched_background();
while(getchar() != ’q’) /* wait ’quit’ command */ ;
sched_foreground();
sched_task_cancel(*(sched_task*)userPointer);
return(0);

}

int main()
{

// launch our main task and apply a tempo curve to it, then launch the
// user canceling fiber, and wait for the main task to complete.

sched_curve_descriptor_elt elements[2] = {
{.type = SCHED_CURVE_BEZIER,
.startValue = 2, .endValue = 8, .length = 20,
.p1x = 0.5, .p1y = 0, .p2x = 0.5, .p2y = 1},

{.type = SCHED_CURVE_BEZIER,
.startValue = 8, .endValue = 2, .length = 20,
.p1x = 0.5, .p1y = 0, .p2x = 0.5, .p2y = 1}};

sched_curve_descriptor desc = {.axes = SCHED_CURVE_POS_TEMPO,
.eltCount = 2, .elements = elements};

sched_init();
sched_task task = sched_task_create(my_task_proc, 0);
sched_task_timescale_set_tempo_curve(task, &desc);

sched_create_fiber(user_cancel_fiber, &task, 0);

sched_wait_completion(task);
sched_end();
return(0);

}

Listing 1.1. An example of Jiffy’s scheduling API.

transformations expressed through tempo curves, and gave a formalism of such curves.
We then described how these curves are implemented in the Jiffy scheduler, and pre-
sented the API of the scheduler.

In its current form, the scheduler is a local system, only maintaining proper time flow
for its host process. Synchronizing timescales across multiple scheduler instances (po-
tentially running on different machines) is the subject of ongoing work.
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The kind of synchronization we considered in this paper was only concerned about
relative speeds. However, when dealing with ensemble music, the notion of synchro-
nization is really about the relative phase of each musician. We could refer to this type
of synchronization as metric synchronization. Ableton Link [8] is one of the tools that
tackle this problem, and offers an elegant model to build musical structure on top of
beat synchronization. However it has some limitations when it comes to multiple tem-
pos and complex polyrhythms. Addressing these scenarios will be the subject of further
research.
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Abstract. This paper presents a framework for music information retrieval tasks
which relate to music similarity. The framework is based on a pipeline consist-
ing of audio feature extraction, feature aggregation and distance measurements,
which generalizes previous work and includes hundreds of similarity models not
previously considered in the literature. This general pipeline is subjected to a
comprehensive benchmark of analogously defined music similarity models over
the task of cover song identification. Experimental results provide scientific ev-
idence for certain preferred combined choices of features, aggregations and dis-
tances, while pointing towards novel combinations of such elements with the po-
tential to improve the performance of music similarity models on specific MIR
tasks.

1 Introduction

Using Music Information Retrieval (MIR) techniques to deal with large sets of music
files has become an increasingly common practice. Working directly with audio and
musical contents has several advantages. MIR methods can provide users the ability to
hum in order to retrieve a melody or to clap to fetch a rhythm, and to use an audio file
as query in a search for similar tracks. The goal of MIR is to make music content more
accessible and in a more intuitive way [1].

Music similarity plays a central role in several MIR tasks. It is often desirable to
define and calculate similarity measures for pairs of music recordings, based on audio
contents and also (derived or annotated) metadata. The use of music similarity measures
on a music dataset provides a solid foundation for navigation, organization, recommen-
dation, and search [2,3].

Since there is no universally agreed-upon formalized concept of general musical
similarity, a fair solution is to look for similarity models which deal with individual as-
pects of music, such as pitch, rhythm, dynamics and timbre, providing tools for melodic,
harmonic, rhythmic, dynamic and timbre-related retrieval tasks, among others. It is im-
portant to state explicitly that the notion of music similarity completely depends on the
context of the retrieval task at hand, which is usually established by the type of dataset
annotations available.
� This study was funded by the Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior

- Brasil (CAPES) - Finance Code 001, and CNPq Grant 307389/2019-7
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The literature on audio-based music similarity presents several approaches, includ-
ing the use of traditional information retrieval methods, such as extracting features from
audio recordings and computing their distances within a vector space [4,5,6,7,8,9],
modeling the extracted feature distributions and comparing the corresponding statis-
tical models [10,11,12,13,14,15], feature learning [16,17], metric learning [18,19], and
deep neural networks [20,21].

The framework presented in this paper, which generalizes the first two approaches
above, is based on a conceptual pipeline [3] that breaks down a generic music similarity
model into three components (feature extraction, aggregation and distance computing),
completely specified by the choices of techniques employed in each component. Its
implementation allows the user to freely combine virtually any techniques within each
component, thus providing a direct way of experimenting with a large number of simi-
larity models at once.

This possibility is explored in the context of music similarity tasks, including Cover
Song Identification (CSI) [22], an application which involves identifying songs3 which
are versions (covers) of each other, assuming that versions of a song should have some
common music trait captured by a music similarity model. This paper presents, to the
best of the authors’ knowledge, the first attempt to comprehensively benchmark music
similarity models in music similarity tasks, where hundreds of models not previously
considered in the literature are tested.

The main goal of the experiments here presented is to identify which music similar-
ity models lead to best results for the annotated datasets considered, which have been
compiled for melodic similarity tasks, rhythmic similarity tasks, genre classification
and CSI. Another contribution of this paper is a modular open-source framework4 for
music similarity offering numerous alternatives for feature extraction, aggregation and
distances.

The remainder of the paper is organized as follows: Section 2 presents the music
similarity models considered; Section 3 presents the metrics considered to assess the
discriminating power of the music similarity models; Section 4 presents the experi-
ments, including the selected datasets, the experimental design, the results and their
discussion; Section 5 outlines the conclusions and directions for future work.

2 Music Similarity Framework

The music similarity framework considered here implements the following pipeline:
1. extract audio features; 2. aggregate local features into global features; and 3. compute
the similarities of every pair of audio recordings within a dataset. A triple {extractori,
aggregatorj , distancek} defines a music similarity model, and our main goal is to
benchmark music similarity models, identifying which models lead to best results for
each annotated dataset. Additionally, the models are also applied to datasets designed
for Cover Song Identification (CSI), another similarity-based music retrieval task.

3 in the CSI literature, song is often taken as a synonym of audio recording, regardless of con-
taining singing voice or not.

4 The source code can be found at https://github.com/rppbodo/
music-similarity-framework.
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Papers addressing music similarity related tasks, including CSI, often derive their
similarity measurements from tonal features, such as chromagrams [23,24,7,25], ton-
netz [26], and symbolic melodic sequences [27,28,29,30,31,32]. Also used in music
similarity retrieval tasks are timbre features (e.g., Mel-Frequency Cepstral Coefficients
(MFCC) [4,10,11,13,12,15]), spectral features (e.g., spectral centroid, bandwidth, con-
trast, flatness, etc) [5], rhythmic features (e.g., Rhythm Pattern) [33,6], and ampli-
tude/energy features (e.g., Root Mean Square (RMS)) [34,35].

Among aggregation methods applied in music similarity are simple statistics (such
as mean, standard deviation, skewness and kurtosis, see e.g. [15]), computed from the
features themselves and their 1st order differences, Gaussian Mixture Models [11,12,13],
Vector Quantization [10], Markov Chains [36], Octave and Interval Abstractions [32],
and Pitch Contour (using 3-levels [27] and 5-levels [31]).

The computation of the similarity between two audio recordings is based on a cho-
sen distance applied to the (possibly aggregated) features. Distances relevant for music
similarity are Manhattan [6,8], Euclidean [4,5,7], Cosine [4,9], Longest Common Sub-
sequence based distances [37,38], Levenshtein [39,38], Kullback-Leibler [13,15], Earth
Mover [10,14], and Monte Carlo distances [11,12].

The detailed analysis of the techniques proposed in the music similarity literature
allows us to observe that several papers do not explicitly argue as for why a particular
extractor (or aggregator, or distance) is selected to solve a particular problem. Even less
frequent are arguments about why a specific set of techniques are used in combination
(instead of many other plausible alternatives). This prompted us to try to explore hun-
dreds of combinations of extractors, aggregators, and distances that are not considered
in the literature. It was thus natural to look at this problem as a benchmark, exhaustively
experimenting with a large number of music similarity models.

The current list of music similarity models considered in the implemented frame-
work started out from a large set of features, aggregators and distances appearing in
the related literature, which has been modified by including and collecting techniques,
but also by discarding techniques by many criteria, including the availability of open-
source implementations. The rationale for this specific criterion is to avoid producing
implementations that might substantially differ from their original implementations due
to ambiguous or insufficiently detailed descriptions. A survey of open-source libraries
(such as LibROSA5, Essentia6, and RP extract7) led us to include techniques not pre-
viously considered in the music similarity literature. The same criteria were applied to
aggregator and distance techniques, but in a softer way, since they are usually much
simpler to implement.

Due to compatibility issues, not all available features, aggregators and distances can
be combined. Framewise numerical features may be aggregated using any statistical ag-
gregation methods, GMM and VQ. Symbolic melodic features use only specific aggre-
gators (octave/interval abstractions, pitch contours and Markov chains). Numerical ag-
gregations (single and multivariate Gaussians, GMM, vector quantization, and Markov
chains) can be compared using spatial distances (Euclidean, Manhattan, Chebyshev,

5 http://librosa.github.io/
6 http://essentia.upf.edu/
7 https://github.com/tuwien-musicir/rp_extract
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and cosine). Statistical models can be compared using Kullback Leibler, Earth Mover’s
and Monte Carlo distances, and all symbolic global features can be compared using
LCS-based and Levenshtein distances.

All the compatible combinations of features, aggregators, and distances considered
result in a total of 690 music similarity models; the complete list is available at https:
//rppbodo.github.io/phd/music-similarity-models.html, along with
descriptions of each function.

3 Music Similarity and Cover Song Identification metrics

The most common way to represent a particular music similarity model applied to a
particular dataset is the similarity matrix. The i, j position of this matrix contains the
similarity between the i-th and the j-th tracks in the dataset. It can be defined from a
normalized distance measure as sim(ti, tj) = 1− dist(ti, tj).

Intra-Inter Class Similarity Ratios (IICSR) When the dataset partitions its record-
ings into labeled classes (e.g. genres, composers, melodic or rhythmic patterns), we
may define the quality of a music similarity model using the intra-inter-class similarity
ratio, computed from the similarity matrix according to the following formula:

IICSR(c) =

∑
t1∈Tc

∑
t2∈Tc,t1 �=t2

sim(t1,t2)

(|Tc|2+|Tc|)∑
t1∈Tc

∑
t2∈TC�c

sim(t1,t2)

(|TC�c||Tc|)

, (1)

where Tc is the set of all recordings in class c and TC�c is the complement of Tc. This
measure compares the average similarity within the class c (weighted by the number of
recordings in this class) with the average similarity for pairs of recordings in different
classes (with one member of the pair in class c). If these ratios are greater than 1, the
similarity model may be used to classify pairs of recordings as belonging to the same
class or to different classes. Intra-inter-class similarity ratios may be summarized by
their weighted average:

weighted mean IICSR =
1∑

c∈C |Tc|
∑
c∈C

IICSR(c)× |Tc|, (2)

where each class is weighted by its size (number of recordings).

Mean Rank (MR) The Mean Rank is broadly used in the CSI literature [9,40], where
queries return ranked lists of cover candidates. MR corresponds to the average position
(rank) where the first cover appears in the resulting list.

Mean Reciprocal Rank (MRR) The reciprocal rank (inverse of a rank) [41] converts
index positions to the [0, 1] range, where higher values represent covers higher up in
the list (topmost ranks). MRR corresponds to the average of the reciprocal ranks, and
its inverse may be viewed as the harmonic mean of the original ranks.
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dataset ntracks nclasses annotations
Ballroom 698 10 dance styles names
GTZAN 1000 10 musical genres
IOACAS-QBH 1057 298 ground-truth melody id
Panteli’s melody dataset 3000 30 original melody id
Panteli’s rhythm dataset 3000 30 original rhythm id
MAST 3104 40 ground-truth rhythm id
1517-Artists 3180 19 musical genres
MIR-QBSH 4479 48 ground-truth melody id
FMA-Small 8000 8 musical genres
Covers80 160 80 original song
YouTubeCovers 350 50 original song
Covers1000 1000 395 original song
Mazurkas 2741 49 mazurka id
SHS9K 9286 143 original song

Table 1. Datasets selected to experiment Music Similarity models.

Median Rank (MDR) The MDR is a robust statistic based on the positions of the first
retrieved cover, obtained as the median of the ranks for all queries.

Mean Average Precision (MAP) Kim Falk [42] defines Mean Average Precision in
the context of recommender systems, in which users perform queries, and each query
returns a list of ranked items. Precision at K (P@k) is the number of relevant items
found in the first k items; Average Precision (AP) = 1

m

∑m
k=1 P@k(u), where m is

the length of the ranked list, and u is the user performing the query; Mean Average
Precision (MAP) = 1

|U |
∑

u∈U AP (u), where U is the set of all users.

4 Experiments and Results

4.1 Datasets

In this Section we present the datasets used to benchmark models within our music
similarity framework. The first part of Table 1 presents datasets designed for various
music similarity tasks, and the second part presents the datasets designed specifically
for Cover Song Identification.

Three datasets are designed for melodic similarity tasks: MIQ-QBSH8 and IOACAS-
QBH9 are designed for the query-by-humming task (classes are composed of a refer-
ence melody and a set of recordings of people trying to hum it), and Maria Panteli’s
melody dataset10 uses synthesis to test similarity models against several melodic trans-
formations.

8 http://mirlab.org/dataSet/public/MIR-QBSH-corpus.rar
9 http://mirlab.org/dataSet/public/IOACAS_QBH.rar

10 https://archive.org/details/panteli_maria_melody_dataset
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Three other datasets – Ballroom11, MAST12, and Maria Panteli’s rhythm dataset13

— are designed for tasks related to rhythm similarity. The Ballroom dataset is composed
of recordings from distinct dance styles; MAST has recordings of students successfully
reproducing rhythmic patterns; Maria Panteli’s rhythm dataset is composed of different
synthesized rhythms subjected to several transformations.

The three remaining datasets in the first part of Table 1 — GTZAN14, 1517-Artists15,
and FMA-Small16 -– are annotated with music genres assigned to each recording. Sev-
eral papers in the literature claim that there is a relationship between genre and tim-
bre [43,44,3], and under this assumption, these datasets could be used to test timbre
similarity models.

The second part of Table 1 presents datasets designed for CSI: Covers8017, YouTube-
Covers18, Covers100019, Mazurkas20, and SHS9K21. The latter is a sub-set of the SHS100K22

dataset crafted by the authors by selecting the original songs that have from 50 to 100
covers.

4.2 Experiment Design

Two experiments are proposed. The goal of the first experiment is to check which music
similarity models lead to best results for the selected datasets. In order to accomplish
this we run each one of the 9 datasets considered through our music similarity frame-
work, compute the Intra-Inter Class Similarity Ratio (IICSR) for every annotated class
within the dataset, and finally compute the weighted mean IICSR for each one of the
690 considered models.

The second experiment has a similar goal to the previous one – to check which mu-
sic similarity models lead to the best results – but now with CSI datasets considering the
specific metrics used in this task. We compute similarity matrices using all 690 models
for the 5 CSI datasets, and then calculate the Mean Rank (MR), Mean Reciprocal Rank
(MRR), Median Rank (MDR), and Mean Average Precision (MAP).

4.3 Results

The results of the first experiment are organized as follows: the best weighted mean
IICSR values for each dataset are presented in Table 2, and the entire list of IICSR
values computed in this experiment is published in https://rppbodo.github.
io/phd/experiment_1.html.
11 http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
12 https://zenodo.org/record/2620357
13 https://archive.org/details/panteli_maria_rhythm_dataset
14 http://marsyas.info/downloads/datasets.html
15 http://www.seyerlehner.info/index.php?p=1_3_Download
16 https://github.com/mdeff/fma/
17 https://labrosa.ee.columbia.edu/projects/coversongs/covers80/
18 https://sites.google.com/site/ismir2015shapelets/data
19 http://www.covers1000.net/
20 http://www.mazurka.org.uk/
21 https://rppbodo.github.io/phd/shs9k.html
22 https://github.com/NovaFrost/SHS100K
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dataset mean IICSR extractor aggregator distance
Ballroom 1.33824 spectral bandwidth vector quant. cosine
GTZAN 1.74945 spectral contrast vector quant. cosine
IOACAS-QBH 1.13599 pitch cont. seg. octave abst. lcs circular min
Panteli’s melody 3.12167 pitch cont. seg. interval abst. levenshtein max
Panteli’s rhythm 2.82936 chroma cens vector quant. manhattan
MAST 1.47572 mfcc vector quant. cosine
1517-Artists 1.21584 mfcc vector quant. cosine
MIR-QBSH 1.29421 pitch cont. seg. octave abst. levenshtein circular max
FMA-Small 1.21128 mfcc vector quant. default cosine

Table 2. Results obtained with Music Similarity datasets.

dataset MR MRR MDR MAP extractor aggregator distance
Covers80 41.575 0.19359 31.0 0.19359 chroma stft diff stats 1 cosine oti
YouTubeCovers 7.97143 0.6942 1.0 0.36114 pitch cont. seg. octave abst. lcs circular mean
Covers1000 144.041 0.25731 35.0 0.19159 pitch cont. seg. octave abst. lcs circular mean
Mazurkas 4.15724 0.95774 1.0 0.82286 pitch cont. seg. octave abst. levenshtein circular max
SHS9K 47.57883 0.40387 6.0 0.05102 pitch cont. seg. octave abst. lcs circular mean

Table 3. Results obtained with Cover Song Identification datasets.

The results of the second experiment are displayed as follows: the best models for
each dataset are presented in Table 3, and the entire list of metrics computed in this ex-
periment is published in https://rppbodo.github.io/phd/experiment_
2.html.

4.4 Discussion

Analysing the models that achieved the best weighted mean IICSR for MIQ-QBSH,
IOACAS-QBH, and Maria Panteli’s melody dataset, it is possible to verify that all of
them have Pitch Contour Segmentation as their feature, which matches the hypothesis
that melodic features lead to better results for melodic datasets. Regarding the aggre-
gators, two models have Octave Abstraction and one has Interval Abstraction. This is
somehow expected, since the alternative abstractions (3-level and 5-level Pitch Con-
tours) are relatively weaker due to their simplistic representations of the original pitch
sequences.

The models that performed best for the Ballroom, MAST, and Maria Panteli’s rhythm
dataset are relatively surprising, not only because none of the features are specifically
designed for rhythmic similarity tasks, but also because they are very different from
each other: Spectral Bandwidth is related to the spectrum spread, MFCC is usually
associated with timbre, and Chroma Energy Normalized Statistics (CENS) is a tonal
feature.

Regarding the highest weighted mean IICSR obtained for GTZAN, 1517-Artists,
and FMA-Small, two out of three best performing models have MFCC as their feature,
and the other one has Spectral Contrast. MFCC is a feature usually related to timbre, so
this matches the initial hypothesis. According to Jiang et al. [45], Spectral Contrast is
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reported to have a better discriminating power for different music types than MFCC, so
it is noteworthy that this feature has also emerged here.

The best models that lead to the lowest Mean Rank values for the five CSI datasets
are shown in Table 3. Four models out of five share the same feature (Pitch Contour
Segmentation) and the same aggregator (Octave Abstraction), which is a very good
indication of the relevance of these methods, while the remaining model uses a Chro-
magram as feature. All features from the best models encode tonal information, which
matches the observation in the literature that tonal differences are the less frequent be-
tween versions [22,46,47].

5 Conclusions

In this paper we introduced a modular music similarity framework designed to bench-
mark 690 music similarity models applied to specific music information retrieval tasks.
Our experiments compared these models under several datasets compiled for tasks re-
quiring different music similarity perspectives, showing that the choices of features,
aggregators and distances not only have a significant impact on the performance of
the corresponding models, but also that many useful techniques and combinations have
been largely overlooked by the music similarity literature, corroborating the importance
of comparative studies such as the present one.

As future work, we consider expanding the lists of features (HPCP, crema-PCP,
Onset Patterns, Scale Transform, Pitch Bihistogram, Intervalgram, etc), aggregators
(Dynamic Time Warping (DTW), Self-Organizing Map (SOM), vector quantization us-
ing tree-based clustering, n-grams, etc), and distances (Mahalanobis, Jensen-Shannon,
Smith- Waterman, Mongeau-Sankoff, etc) in the music similarity framework, as well
as incorporating alternative approaches to music similarity that not necessarily follow
the current pipeline, such as feature learning [16,17], metric learning [18,19], and deep
neural networks [20,21].
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Abstract. In this work, we focus on the problem of automatic instrument recog-
nition (AIR) using supervised learning. In particular, we follow a state-of-the-art
AIR approach that combines a deep convolutional neural network (CNN) archi-
tecture with an attention mechanism. This attention mechanism is conditioned on
a learned input feature representation, which itself is extracted by another CNN
model acting as a feature extractor. The extractor is pre-trained on a large-scale
audio dataset using discriminative objectives for sound event detection. In our
experiments, we show that when using log-mel spectrograms as input features in-
stead, the performance of the CNN-based AIR algorithm decreases significantly.
Hence, our results indicate that the feature representations are the main factor that
affects the performance of the AIR algorithm. Furthermore, we show that various
pre-training tasks affect the AIR performance in different ways for subsets of the
music instrument classes.

Keywords: music instrument recognition, deep learning, representation learning

1 Introduction

Real world music recordings often consist of multiple music instruments that can be
active simultaneously. Detecting individual instruments or instrument families is an
important research problem in areas such as machine listening, music information re-
trieval (MIR), and (music) source separation. The problem of detecting and categorizing
the active instruments is often referred to as automatic instrument recognition (AIR).
Recent approaches to AIR are mostly based on deep convolutional neural networks
(CNNs) [1–5].

One commonality in deep learning approaches for AIR is that they consist of three
modules [1, 3–5], namely the pre-processing, embedding, and classification modules.
The first module pre-processes and transforms the respective input music waveform
into a compact signal representation. The most common transforms are the short-time
Fourier transform (STFT) and related filter-banks such as Mel-bands [1, 3, 4, 6] and
the constant-Q transform (CQT) [7]. Common operations as pre-processing steps are
harmonic and percussive separation [3] as well as logarithmic magnitude compression
and data normalization or standardization [4].

� Equally contributing authors
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The second module, referred to as embedding, accepts as input the pre-processed
and transformed music waveform from the first module. It yields a feature representa-
tion that is used to condition the last module, i. e., the classification module, which is
responsible for computing the posterior, i.e., the label probability, of the correspond-
ing instrument classes (e.g., “electric guitar” or “piano”). Most often, the embedding
and classification modules are learned jointly during a training procedure that is based
on supervised learning, in which the class labels for each recording are given from a
curated dataset [1, 4].

Regarding the embedding module, a common ingredient in the related literature is
the usage of CNNs [1, 3, 4] and, more recently, CNN-based attention mechanisms [5,
8]. The approaches employing attention mechanisms are experimentally shown to yield
state-of-the-art results, and it is assumed that the attention mechanism is responsible for
the success of the methods. However, the studies presented in [5] and [8] condition the
attention mechanism on a feature representation that is computed using a pre-trained
CNN: That CNN, in particular the VGGish network [9], is initially trained for audio
event detection (AED) in a supervised way using general audio signals and classes
obtained from Audio Set [10], before being applied on the task of AIR. This means
that the attention-based approaches to AIR make use of transfer learning [11, 12]. This
differs from other approaches, which learn the representations jointly for the task of
AIR [1, 3, 4]. Therefore, it could be argued that the observed increase in performance
of such attention-based models rather needs to be attributed to the discriminative power
of the feature representations from the CNN, which was previously learnt from more
general audio signals instead of solely music signals [13].

In this work, we analyze the impact of the role of learning feature representations
for an attention mechanism for music instrument classification performance. It should
be noted that it is not our intention to conduct a comparative study on attention mecha-
nisms versus representation learning, as we believe that both are equally beneficial for
the task at hand. Instead, we aim to show that deep learning approaches to AIR can
substantially benefit from employing representations that are learned using reconstruc-
tion or alignment optimization objectives [14] as well as datasets that contain general
purpose audio signals [10].

To answer our research question, we focus on the attention-based model presented
in [5], which is trained and tested on the respective subsets of the OpenMIC dataset [15].
To investigate the influence of different feature representations, we experiment with
various commonly used filter-banks, such as (log) Mel-spectrograms, and learned rep-
resentations. For the latter case, different datasets and optimization objectives are used
to pre-train the CNN responsible for yielding the feature representations. These are
described in sections 3 and 4.1, respectively.

2 Attention-based Model

The attention-based model for AIR from the work presented in [5] is illustrated in Fig. 1
embedded into our general experimental pipeline as described in the following.
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Fig. 1. An illustration of our experimental pipeline and the method presented in [5] that employs
an attention mechanism and a pre-trained CNN (VGGish) for computing the feature representa-
tion(s).

2.1 Input pre-processing

An input time-domain music signal is first re-sampled at a sampling frequency of 16
kHz and then transformed into a time-frequency representation using the short-time
Fourier transform (STFT). The parameters for the STFT are a window size of 25 ms
using the Hann function and a hop-size of 10 ms. Each windowed segment is zero-
padded to 512 samples. From the magnitude of the STFT, a Mel-spectrogram with
64 mel bands is computed. We apply log-magnitude scaling to the Mel-spectrogram,
yielding a final input spectral representation denoted as “Log-Mel” in Fig. 1.

2.2 Post-processing & Representation

The Log-Mel is used to condition the VGGish network presented in [16]. This net-
work comprises six convolutional (conv) blocks followed by three fully-connected feed-
forward (dense) layers (FC). Each conv block consists of a two-dimensional conv layer
(2Dconv), the rectified linear unit (ReLU) activation function, and a two-dimensional
max-pooling operation. The numbers of kernels across the conv blocks are {64, 128,
256, 256, 512, 512}. The kernel sizes for the conv and max-pooling operations in all
conv blocks are 3×3 and 2×2, respectively, and the stride size is set to 1. Furthermore,
zero-padding is applied to preserve the size of the intermediate latent representations
(activation maps), which are computed using the convolutions.

The outputs of each kernel in the last conv block are concatenated to a vector
and then given as input to the first FC. The number of output units in each FC is
{4096, 4096, 128}, respectively. The ReLU activation function is used after each FC.
The output of the VGGish is a feature representation that summarizes approximately
one second of spectral information into a single embedding vector [16].

This output representation is then post-processed by applying a whitening transform
using principal component analysis (PCA). The bases for the PCA are pre-computed
from the audio signals’ corresponding representation obtained by the VGGish [15, 16]
using the training subset of Audio Set [10]. This whitened feature representation is 8-bit
quantized and mapped to the range of [0, 1].
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2.3 Additional CNN, Attention Mechanism & Classification

The above representation is processed by a block of 2D CNNs, which precede the atten-
tion module. It consists of three 2Dconv layers with unit stride and a group-normalization
layer. Each layer employs 128 1 × 1-kernels. The output of the group-normalization
layer is then updated by means of residual connections using the information of the
post-processed representation.

The output of the residual connections is given to the attention module that consists
of two 2Dconv layers with kernel size 1×1. The number of kernels in each 2Dconv layer
is equal to the number of classes. The representation is fed to each 2Dconv layer in the
attention module, followed by the application of the element-wise sigmoid activation
function. The output of the conv layer responsible for decoding the attention embedding
is normalized to unit sum with respect to the time-frame information. The output of the
conv layer responsible for the class activity is used to gate the normalized output of the
other conv layer.

Using this attention mechanism, the posterior can be computed by aggregating the
time-information of the output of the attention mechanism, followed by the application
of the hard-tanh function linear in the range of [0, 1], equal to 1 for values > 1, and 0
for negative values. The aggregation is performed due to the weakly annotated labels
contained in OpenMIC [5].

3 Datasets

To optimize the overall model parameters contained in each module described in Sec-
tion 2, a two-stage training scheme is employed. In the first stage, the modules that are
used to compute the feature representation, i. e., as illustrated in green color in Fig. 1,
are pre-trained on a task different from AIR. The second stage uses the pre-trained
modules from the previous stage, and optimizes the rest of the modules, i. e., the yellow
modules illustrated in Fig. 1, using the labels associated with the task of AIR.

Table 1. Usage of different datasets for the respective training stages and objectives. Denoising
from additive noise is indicated by +, and from multiplicative noise as �.

Datasets
1st stage 2nd stage 1st stage objectives
Audio Set OpenMIC General purpose AED
NSynth OpenMIC Textual description, Denoising +/�
Freesound OpenMIC Tag Alignment

For the first stage, we employ the already optimized VGGish embeddings [15]1

pre-trained on the Audio Set [10], and the NSynth [17] and Freesound [18] datasets.
Depending on the dataset for this stage, various pre-training objectives are used (see
Section 4.1). For the second stage, we utilize only OpenMIC [15] for both training and
testing, with the respective subsets used in [5]. Table 1 provides an overview of this.

1 Publicly available under https://github.com/cosmir/openmic-2018
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4 Experimental Procedure

Since the PCA and 8-bit quantization steps in the post-processing of the feature repre-
sentation from the VGGish are irrelevant to the scope of our work, we have excluded
them from our experiments. Instead, a simple normalization to [0, 1] is applied to the
representation during the second stage of training to avoid any crucial performance dis-
crepancies due to the inductive biases of the attention-based method for AIR.

4.1 Pre-training Objectives (First Stage)

This section provides technical details regarding the experimental setup for each em-
ployed objective in the first training stage for optimizing the parameters of the VGGish.
Table 1 gives a summary and overview. For all pre-training learning objectives, the
Adam optimizer is used with a fixed learning rate of 1e−4. Furthermore, the batch size
is set to 64 and an early stopping mechanism is used, which terminates the training
procedure if the used criterion (validation loss) has not improved for five consecutive
iterations throughout the entire training data. The maximum number of training epochs
is 50. All parameters are initialized randomly with samples drawn from a uniform dis-
tribution and scaled using the method presented in [19].

Textual description One investigated pre-training objective is the prediction of the
textual description of a music recording. This objective draws inspiration from the field
of audio captioning, which aims at generating a textual description of an audio signal.
Subject to the goal of this work, we employ the NSynth dataset [17] that contains the
following textual descriptions of the musical notes for every recording in the dataset:
{’bright’, ’dark’, ’distortion’, ’decay’, ’presence’, ’multiphonic’, ’modulation’, ’percus-
sive’, ’reverb’, ’rhythmic’}2. For using the textual descriptions of the music files to train
the VGGish, we employ the Word2Vec language model, presented in [20] and pre-
trained on an English vocabulary, to yield a vector representation of each description.

The Word2Vec model encodes each input word, in our case the textual description,
into a 300-dimensional vector embedding. That vector is used as the target to learn
the parameters of the VGGish. To do so, the output of the VGGish is given as input
to a trainable batch-norm layer and two fully-connected feed-forward (dense) layers
(FC). The first FC employs the non-linear tanh activation function, whereas the second
does not employ any element-wise non-linear functions. The number of units in the
FCs is set to 300. The VGGish network applied on an audio example from the NSynth
dataset yields a single vector, because every NSynth example has a length of one second.
Therefore, it is not necessary to aggregate over temporal information. The parameters
of the VGGish and the following block of batch-norm and FCs are jointly optimized by
minimizing the cosine loss between the predicted and target word-vector embeddings.
The margin hyperparameter in the computation of the cosine loss is set to 0.5.

2 We replaced the original NSynth descriptions {’fast decay’, ’long release’, ’nonlinear env’
’tempo-synced’} with {’decay’, presence’, ’modulation’ ’rhythmic’}, based on the additional
description contained in the dataset. This was due to the fact that the original descriptions
could not be fully encoded by the employed language model.
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Signal Recovery Another training objective we investigate is the recovery of the origi-
nal Log-Mel spectrogram from a corrupted version of the signal. The goal of this objec-
tive is to enforce the representation from the VGGish to encode the relevant information
contained in the Log-Mel. To do so, we employ denoising auto-encoders (DAEs) [21]
and corrupt the Log-Mel in two different ways before it is input to the VGGish: a) with
element-wise additive noise (+) drawn from a Gaussian distribution with zero mean
and 0.1 standard deviation, and b) with element-wise multiplicative noise (�). For the
latter case, random values are drawn from a Bernoulli distribution with p = 0.5.

To decode the representation of the corrupted Log-Mel obtained by the VGGish, we
employ a single block of conv layers containing four transposed one-dimensional conv
(1Dconv) layers. We use transposed 1Dconv layers to be able to recover (upsample back
to) the original dimensionality regarding time-frames, which the VGGish reduced. The
number of kernels and their size in each layer are {128, 64, 64, 64} and {10, 21, 31, 37},
respectively. No zero-padding is applied between each convolution. Furthermore, the
first three 1Dconv layers employ the leaky ReLU activation function with a leaky-factor
of {0.1, 0.25, 0.5}, respectively. The last conv layer uses a linear activation function.
These hyperparameters are chosen experimentally so that a reasonable convergence is
achieved using a random and smaller subset of NSynth.

Audio & Tag Alignment We also explore the objective of aligning audio and asso-
ciated tags. The alignment is achieved by maximizing the agreement of the computed
audio and tag representations using a contrastive loss. We employ the tag encoder and
the corresponding hyperparameters following the method presented in [14], whose goal
is to compute representations that reflect acoustic and semantic characteristics of audio
signals. For the audio encoder, we use the VGGish as discussed above. To match the di-
mensionality used by the audio tag encoder, we apply an affine transformation after the
VGGish. The optimization hyperparameters for this configuration are taken from [14].

4.2 Downstream Instrument Recognition (Second Stage)

After optimizing the parameters of the VGGish with one of the above pre-training ob-
jectives, the VGGish computes the representations of the audio files contained in Open-
MIC. Together with the corresponding labels within OpenMIC, these are then used to
optimize the parameters of the CNN and the attention mechanism. To that aim, we use
the existing splits of OpenMIC for training and validation as employed in [5].

For training, we use the binary cross-entropy loss function. The hyperparameters
for optimization are the Adam algorithm with a learning rate of 5e−4, a batch size
equal to 128 data points and a total number of 350 training epochs, following [5]. After
every iteration over the entire training subset, we evaluate the model performance on
the validation subset. After training, we select the best set of parameters based on the
obtained evaluation score calculated in every iteration.

5 Evaluation

While the total number of audio files per instrument in OpenMIC is balanced, the num-
ber of positive and negative examples varies from one instrument class to another. For
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Fig. 2. F1-scores per instrument class (left) and overall (right) for the attention-based model [5],
conditioned on feature representations computed using the pre-trained VGGish and a randomly
initialized VGGish, and the Log-Mel representation. Note the marginal differences between post-
processing (PP) and normalization (norm.) For VGGish (pre-trained), the Audio Set is used in
the first training stage. For VGGish (random) and Log-Mel, no first training stage is performed.

this reason, we compute the macro-average F1-score (F1-macro) explicitly for positive
and negative classes of every instrument class to evaluate both the parameters of the
attention-based model and the pre-training stages, during both training and validation
phases. During evaluation, the outputs of the classifier are subject to a post-processing
operation that thresholds to zero values below 0.5 and unity values otherwise. Finally,
to determine the benefits of each objective, we test the attention mechanism each time it
has been trained with a different feature representation on the test subset of OpenMIC.

6 Results & Discussion

6.1 Representation Post-processing: Impact on performance

First, we examine the impact of the post-processing steps (see Section 2.2) versus nor-
malization on classification performance, illustrated in Fig. 2. From the F-score, it can
be seen that a simple scaling of the feature representation induces only a marginal per-
formance drop. This allows us to omit further data-dependent post-processing stages
that are irrelevant to our research question, yet might impose some performance discrep-
ancies. From the barplot it can also be observed that without the PCA and quantization
steps the performance increases marginally for the banjo, clarinet, drums, mandolin,
trombone, and voice instrument classes.

6.2 Learned Representations: Impact on Performance

To highlight the impact of the learned representations on the performance for classifying
musical instruments using the discussed attention mechanism, Fig. 2 shows the results
from the attention-based model conditioned on three feature representations. These are
computed from the pre-trained VGGish, a randomly initialized VGGish, and using the
Log-Mel representation directly, i. e., the VGGish acts as an identity operator.
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The Fig. 2 boxplot highlights two observations: First, regarding F1-macro, the dis-
criminative power of the pre-trained VGGish is responsible for obtaining the best clas-
sification performance. Secondly, even an unoptimized (randomly initialized) VGGish
can be used to compute a feature representation that yields a classification performance
comparable to Log-Mel, which is a common feature representation for audio classifi-
cation tasks. However, the barplot demonstrates that Log-Mel outperforms the repre-
sentation from the randomly initialized VGGish for a few musical instruments classes
including cymbals, ukulele, violin, and voice. These two tendencies suggest that the
performance of the attention-based model may be accredited mostly to the discrimina-
tive power of the representation yielded by the VGGish. They also imply that different
objectives or datasets may be used to pre-train the VGGish and yield different results.

Fig. 3 explores this observed direction with the results of the classification perfor-
mance using the various objectives described in Section 4.1. As can be seen in the box-
plot, the pre-training tasks of signal recovery and textual description provide significant
improvements by 0.11 in the F-score over the randomly initialized VGGish. Compared
to the Log-Mel features, marginal improvements of approximately 0.02 are observed.
The barplot shows that each pre-training objective seems to be beneficial for different
musical instrument classes. For example, Textual provides competitive results for the
instrument classes mallet, mandolin, organ, ukulele, and voice, while Den � seems to
work well for piano, ukulele, and violin. Den + provides improvements for percussive
musical instruments such as cymbals and drums. In any case, the VGGish pre-trained
on Audio Set (see Fig. 2) significantly outperforms the best performing models which
employ NSynth.

Plausible explanations for these observed discrepancies lie in the amount of data
and variability within Audio Set, and in the naiveness (in the sense of simple and not
carefully devised) of the pre-training objectives, e.g. the signal recovery. This explana-
tion is underlined when considering the results for the Align objective (Fig. 3), which
employs Freesound and uses a more sophisticated mechanism to exploit the information
of the audio tags.

Fig. 3 shows that the usage of larger corpora in conjunction with a more sophis-
ticated objective (Align) can lead to significant improvements in attention-based AIR
compared to the signal recovery and textual description objectives. Nonetheless, it is
still sub-optimal compared to VGGish pre-trained on Audio Set. The discrepancy in
performance between the two may be accredited to the data availability. However, this
finding highlights the trend that using more general purpose audio datasets can improve
the downstream task of AIR.

7 Conclusions

In this work, we investigated the importance of the role of learning representations w.r.t.
an attention mechanism in music instrument classification algorithms. To that aim, we
focused on the attention-based model for music instrument recognition presented in [5],
and experimentally explored the impact of various feature representations on the perfor-
mance of the attention-based model. Our experimental findings highlight the following
trends: i) Discriminative objectives in conjunction with large scale and general purpose
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Fig. 3. F1-scores per instrument class (left) and overall (right) for the attention-based model [5],
conditioned on feature representations computed from pre-training the VGGish for audio and tag
alignment (Align), textual description (Textual), and signal recovery from additive noise (Den +)
and multiplicative noise (Den �). The first training stage uses Freesound for Align, and NSynth
for Textual, Den + and Den �.

audio corpora are an important factor to be considered in AIR apart from the atten-
tion mechanism, ii) the usage of audio tags for computing representations is an attrac-
tive objective that yields competing performance, and iii) training objectives that take
advantage of general audio and annotations or, respectively, the exploitation of multi-
modalities in a self-supervised manner are emerging directions for future research.
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Abstract. Humans efficiently extract relevant information from complex auditory
stimuli. Oftentimes, the interpretation of the signal is ambiguous and musical mean-
ing is derived from the subjective context. Predictive processing interpretations of
brain function describe subjective music experience driven by hierarchical precision-
weighted expectations. There is still a lack of efficient and structurally interpretable
machine learning models operating on audio featuring such biological plausibility. We
therefore propose a bio-plausible predictive coding model that analyses auditory signals
in comparison to a continuously updated differentiable generative model. For this,
we discuss and build upon the connections between Infinite Impulse Response filters,
Kalman filters, and the inference in predictive coding with local update rules. Our
results show that such gradient-based predictive coding is useful for classical digital
signal processing applications like audio filtering. We test the model capability on beat
tracking and audio filtering tasks and conclude by showing how top-down expectations
modulate the activity on lower layers during prediction.

Keywords: Predictive Processing, Machine learning, Digital Signal Processing

1 Introduction

1.1 Audio Processing and Predictive Coding in the Human Brain

Research on human auditory processing has demonstrated that humans are efficient at tracking
stochastic auditory regularities and can even disentangle stationary parts, e.g. fundamental
frequencies, from dynamic transformations, e.g. resonances, in musical events. The predictive
coding (PC) theory is a popular framework in neuroscience that explains how such complex hu-
man processing could arise from a relatively simple repeated algorithmic pattern implemented
in neurons, namely the reduction of prediction errors [1, 2]. Recent advances in machine
learning have progressed towards predictive coding models that update simulated neurons with
errors computed local to these neurons, in contrast to the backpropagation through entire neu-
ral networks that drive most current deep learning systems [3]. Through the use of local errors
and simple neural operations (e.g. summation or addition) PC networks are plausible models
of the computations in biological neurons. From an engineering perspective, predictive coding
networks (PCN) with a single layer already deliver useful computations, like the source-filter
separation in Linear Predictive Coding (LPC), a widely used Digital Signal Processing (DSP)
method. To live up to their full potential, PCNs need hierarchical structure. In hierarchical
PCNs hidden layers predict the expected latent states of lower layers. However, there is still a
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lack of hierarchical and biologically plausible machine learning models that combine the possi-
bility to operate on raw audio with reasonable performance on classical DSP tasks. These tasks
can include audio filtering or extracting musical information, e.g. beat timings, from audio.

1.2 Hierarchical Predictive Coding and Digital Signal Processing

The number of existing studies employing predictive coding to process raw audio is limited and
available methods are generally difficult to interpret. Moreover, PC models in neuroscience
are generally restricted to simple auditory stimuli or even symbolic inputs [4, 5]. Still, there
are similarities between the structures of Infinite Impulse Response (IIR) filters and recurrent
neural networks (RNN), classes that are already widely used in DSP applications and those
models that model human (auditory) cognition more specifically, in particular the Kalman filter
or predictive coding networks. These connections will be discussed in more detail in Section 2.

A major challenge when employing predictive coding networks for engineering tasks is
that they only deliver approximate results during learning and inference. This poses a major
drawback in the context of DSP tasks, where high accuracy is generally required. Furthermore,
it is difficult to design efficiently operating hierarchical PC models, which would have the
advantage of naturally scaling to larger DSP systems with meaningful cognitive interpretations.
To solve these challenges, we resort to the structural similarities between PC models and
established DSP methods in the next section and then introduce a hierarchical PC model 1.

2 Related Work

The similarity between IIR filters, Kalman filters, RNNs, and predictive coding networks is
particularly apparent when one views these models in their state-space (SSM) form. Figure
1 a) provides an overview of these related classes in state-space form, such as they are used
in tasks typical for each class. Aspects of learned model structure, such as filter coefficients,
are referred to as weights in the context of artificial networks. Generally speaking, ”inference”
refers to employing these given coefficients (i.e. weights) to update hidden representations,
while ”learning” refers to the slower process of optimizing weights.

While the signal flow of the model classes is directly comparable, differences arise in
the way inference and learning are addressed in typical tasks. Kalman filters are usually used
for dynamic inference given prior assumptions on the data, resulting in mathematically exact
updates of their latent state. The deterministic class of IIR filters is typically used to apply a
previously designed transfer function to incoming signals, where output signals are a weighted
combination of previously processed signals. Some exceptions, such as differentiable IIR
filters allow to learn weights during application [6]. Kalman filters and predictive coding
networks are typically modeled as probabilistic generative models, keeping track of an inferred
latent state with associated variance (or inverse precision). Both have found applications in
modeling cognitive and neural processes. In contrast to Kalman filters, optimization in predic-
tive coding networks generally addresses state inference and weights learning simultaneously.

Finally, PCNs can include internal predictions of their latent states, i.e. ”top-down” ex-
pectations about activities in lower PCN layers [2, 7]. This hierarchical structure is similar,

1 Code is available at github.com/andreofner/APC
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Fig. 1. a) Comparison of Kalman filters, differentiable IIR filters, and gradient-based predictive coding
networks in state-space form. Blue color indicates variables that are optimized in a typical filtering
application for each model. b) Signal analysis and synthesis with autoregressive predictive coding and
linear activation functions: In the analysis stage, observations at time-step t are mapped to hidden states
using encoder weights. The learned transition dynamics are then applied to the latent state. Outgoing
predictions for the next timestep t+1 are computed via decoder weights that map from the updated
latent state to the expected sensory input. During synthesis, the prediction error is fed to the model
jointly with the previous prediction.

but not identical, to the multi-layer architecture of deep neural networks, which typically
lack the feedback connections that are inherent to PCNs. More specifically, DNNs can be
interpreted as corresponding to pyramidal dendritic connections in the biological counterpart.
This means that DNNs, possibly with multiple layers, connect adjacent variables in PCN
layers [8]. Finally, existing work on PCN architectures has explored ”dynamical” predictive
coding, where not only the activity of lower layers but also (multiple) temporal derivatives
are modelled [9]. Here, we explore the audio DSP capabilities of single-layer and hierarchical
PCN models interpreted as biologically plausible Neural Kalman filters. This PCN class has
been discussed for single-layer models in [10].

2.1 Autoregressive Signal Filtering with State-Space Models

Signal analysis with autoregressive filters at discrete time-steps t can be described with respect
to a steady state transfer function H(z)

H(z)=
G

1−
∑k

j=1ajz
−j

=
G

A(z)
(1)

with input gain G [11, 12]. The parameters aj with 1≤ j≤ k and G of this state transfer
function can be optimized with respect to the prediction error e(x) between predicted signal
p(t) and observed signal o(t), also referred to as excitation or residual signal:

e(t)=
1

G
(o(t)−

k∑
j=1

ajo(t−j)) (2)

The SSM of this generalized prediction error filter is updated with the following difference
equation:

z[t+1]=A[t]z[t]
o[t]=C[t]z[t]

(3)

where z[t] is the state vector at timestep t and the prediction coefficients aj are represented
by weights A and C. All four discussed model classes, despite originating from the different
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fields can be interpreted in prediction error minimizing SSM form. Linear predictive coding
(LPC), a widely used DSP tool, draws from this possibility for the design of IIR coefficients.
LPC is typically used for signal compression, particularly for speech coding, by separating
stationary residual signals from imposed resonances [13]. This theoretically allows to analyse
and synthesize signals using the same model. However, the efficient algorithms employed
in LPC are not directly biologically interpretable and generally do not actually use a SSM
to find the coefficients. From this perspective, our work generalises LPC towards the more
general class of hierarchical PCN, where analysis and synthesis use the same model.

RNN and Differentiable IIR Filter Recurrent neural networks, in their simplest form, can
be expressed by the following difference equations [6, 14]:

z[t+1]=σz(Wzz[t]+Uzx[t+1]+bz)
y[t+1]=σy(Wyz[t+1]+by)

(4)

with hidden states z, inputs x and outputs y. W and U are trainable weights and b are biases.
Known from previous work is that, in the case where activation functions σ are (non-)linear
and the biases are set to zero, this structure directly resembles a (non-)linear all-pole IIR filter

z[t+1]=Wzz[t]+Uzx[t+1]
y[t+1]=Wyz[t+1]

(5)

which scales to arbitrary order of transfer functions H(z) (also referred to as the filter order)
and allows to train differentiable IIR filters using the optimization methodology for RNNs
[6]. A useful generalized state space form for such IIR filters is

z[t+1]=Az[t]+Bx[t]

y[t+1]=Cz[t+1]+Dx[t+1]
(6)

where matrices A,C represent the learnable weights for latent state transition and output
transformation and B,D are weights for input transformations [6].

Kalman Filters The Kalman filter gained large popularity in fields such as engineering,
statistics, and neuroscience and filters data points with respect to a probabilistic latent state
and their expected precision. Typically, dynamics and observation models are linear and the
observed noise and the latent states are modeled as Gaussian distributions. Similar to the
previously discussed model classes, the Kalman filter can be described in SSM form:

z[t+1]=Az[t]+Bu[t]+v
y[t+1]=Cz[t+1]+w[t]

(7)

with hidden states ht at discrete timesteps t. Correspondingly to the deterministic IIR filter,
the weights of the transition matrix A describe the linear dynamics. The weights of matrix
B and C parameterize the observation model. Weights B transform the control inputs u, i.e.
known inputs to the system and C map from inferred state to the sensory prediction. Finally,
v and w are white noise Gaussian processes with mean zero. The Gaussian prior p(zt+1)
and posterior distribution p(zt+1 |y1...t,xt) of the Kalman filter are parameterized by their
sufficient statistics, the mean µ and covariance matrix Σz [10, 15].
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Gradient-Based Predictive Coding Gradient-based predictive coding, as described in has
been applied to an approximation of the exact inference in the Kalman filter [10]. In the
simplest case, without observations or control inputs, we have a state space model of the form

z[t+1]=Az[t]
y[t+1]=Hz[t+1]

(8)

where A and H are learnable matrices for the state transition dynamics and the observation
model respectively.

Following [10], we define the loss function of the predictive coding filter as:

argminµt+1L=argmaxµt+1p(yt+1 |zt+1)p(zt+1 |zt) (9)

In this formulation, weights A and H and the inferred hidden state z (or, more specifically,
its mean µ and variance εz parameters) can be updated using gradient descend based on the
precision weighted prediction errors local to the layer [10]:

dL

dµt+1
=−HTΣzεz+Σxεx,

dL

dA
=−Σxεxµ

T
t ,

dL

dC
=−εyµ

T
t+1 (10)

with sensory prediction errors εy=y−Hµt+1 and state prediction errors εz=µt+1−Aµt

[10]. Intuitively speaking, this means that each layer optimizes the quality of its signal predic-
tions pyt+1

=Hµt+1 and of its state predictions pµt+1
=Aµt. As this optimization process

happens locally informed and in parallel for each optimized variable, many different possible
outcomes decrease the prediction error. E.g., quickly adapting observation weights H induce
different latent states than a slowly optimized observation model. Similarly, missing accuracy
in the observation model might be compensated by hidden state optimization.

A more general form of the predictive coding SSM includes additional weights for control
inputs u and observed inputs x:

z[t+1]=Az[t]+Bu[t]
y[t+1]=Hz[t+1]+Dx[t]

(11)

In summary, we see that single layer predictive coding models and Kalman filters can be
represented using the same SSM as IIRs and RNNs (excluding nonlinearities), but additionally
differentiate between control and observed inputs.

3 Hierarchical Predictive Coding of Audio

To create a hierarchy of layers with local computations, we can augment the predictive coding
SSM mentioned in equation 11 with two sets of weights, F and G. These weights modulate
the influence of the layer’s own latent state z in comparison to a top-down prediction of this
state ztd provided by a higher layer:

z[t+1]=FAz[t]+GAztd[t]+Bu[t]
y[t+1]=Hz[t+1]+Dx[t]

(12)

and denote the weighted state prediction from current and next higher layer with ẑ=
Fz+Gztd. In all experiments, we ignore control inputs u, which could receive known
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Fig. 2. Predictive Coding network for hierarchical Kalman filtering: At each timestep t, predictions
yt are generated from a latent state zt using decoder weights that are optimized towards the sensory
prediction error et between observation x and prediction y. Future latent states zt+1 are computed with
learnable transition weights. The transition weights are optimized towards the state prediction error ezt
between predicted state ẑt and the next inferred state zt. Hidden PC layers minimize the prediction error
ezt from a ”top-down” prediction of the state. The hidden state z is optimized towards sensory and state
prediction error et and ezt and creates a balance between outgoing and incoming predictions. Optional
encoders allow to predict with respect to past observations xt−1 or control inputs u.

additional (action) signals and feed past observations xt−1 to the observation encoder for the
filtering task presented in section 4.3.

The state prediction error now includes the additional input and weights:

εz=µ[t+1]−FAµ[t]−GAµtd[t] (13)

Figure 2 shows an overview of a single layer predictive coding model and how multiple
layers can be connected through locally informed predictions and prediction error signals.
More precisely speaking, the lowest PC layer directly predicts audio inputs and receives
prediction error et at every timestep. In contrast, hidden PC layers predict the hidden latent
states (”cause units”) of the lower layer and receive state prediction error ezt . Both lowest and
hidden PC layers additionally optimize the weights of their transition model that maps from
currently inferred state zt to the next state zt+1. We can interpret weights F and G as part of
the prediction units that produce the optimal state predictions zt+1 given the transition model
A. Finally, the latent state zt+1 is optimized in parallel via gradient descent to minimize the
summed precision weighted prediction error et+ezt local to the respective layer.

We use an overlap-and-add processing approach which is commonly used in DSP, mean-
ing that the PCN processes audio signals in overlapping sequences. For all experiments, the
lowest PCN layer processes these sequences sample-by-sample. Hidden layers have identical
update frequencies. We found that sequence sizes between 16 and 2048 frames provide
meaningful results. The hop-length was set to half the sequence length.

3.1 Audio Analysis and Synthesis with Predictive Coding

Assuming purely linear prediction and a well-trained model, using the PCN for audio re-
synthesis is possible by reverting the process that computes the residual signal at timestep t
(i.e. linear prediction error) from the prediction during analysis. Figure 1 b) shows an overview
of the steps for synthesis and analysis given at the lowest layer of a hierarchical predictive
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coding model. While this is not the only possible approach to analyze and synthesize signals
with predictive coding networks, it has the advantage of relatively exactly replicating the
approach taken in LPC. In LPC the coefficients minimizing the squared error during the linear
prediction of the next sample resemble compressed versions of the resonances (typically
formants in speech coding) and allow the signal to be transmitted with high compression rates
through block-wise filter coefficients and down-sampled residual signals. For linear predic-
tion, this LPC residual signal is equal to the prediction error that arises in (gradient-based)
predictive coding.

Assuming linear PCN weights and audio with stationary parts, we expect that resonant
parts of the audio are gradually removed from the residual. Added hierarchy and non-linear
activations will affect the meaning of the first layer’s residual signal, e.g. through emerging
attentional processes.

4 Results

4.1 Beat Tracking

In order to quantitatively assess the possibility to extract music information from raw audio
using prediction errors, we resort to a beat tracking task using two datasets: The SMC MIREX
dataset is commonly used for beat tracking evaluation [16]. Our second evaluation is based
on finger tapping recordings in the NMED-T dataset that focuses on electroencephalographic
(EEG) recordings during music perception [17]. We choose an approach similar to the predom-
inant local pulse (PLP) method described in Grosche et al. [18] and predict beat timings based
on a local enhancement of a novelty function. The novelty function in [18] is based on spectral
flux, the spectral difference between subsequent Fourier transformed audio inputs. We feed
Fourier transformed audio inputs to the PCN (this being the only place where the PCN inputs
are not audio samples) and use the prediction error from a single layer PCN to compute the
novelty curve. Wherever possible, we use the same FFT parameters as used in Grosche et al.
[18] but do not tune any other hyper parameters. For comparison to other approaches, we report
the F-measure and two continuity-based metrics: CMLt, measuring correctly tracked beats at
the metrical level, and AMLt, which allows variations such as double, half or offbeat variations
[19]. All evaluations are based on the mir eval package [20]. Next to the PLP model, we com-
pare our approach to established baselines: A dynamic Bayesian network from [21] and the
dynamic programming approach from [22]. Table 1 shows resulting scores on both datasets.

Table 1. Beat tracking evaluation.

SMC MIREX F-Score CMLt AMLt NMED-T F-Score CMLt AMLt
Ellis [22] 0.339 0.162 0.315 Ellis [22] 0.277 0.195 0.473
Grosche [18] 0.360 0.071 0.221 Grosche [18] 0.305 0.037 0.125
Böck - online [21] 0.521 0.363 0.433 Böck - online [21] 0.092 0.105 0.280
PCN (ours) 0.205 0.108 0.201 PCN (ours) 0.321 0.111 0.295
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Interestingly, with respect to the F-Measure, our method outperforms the baselines on
the NMED-T dataset but delivers the worst performance on the SMC dataset. This indicates
a useful performance on genres with salient rhythmical features, as the NMED-T dataset
was designed focusing on Pop songs with clear rhythms. The SMC dataset features many
songs with soft onsets, such as strings, where the novelty function from the prediction error
is not sufficient. We hope that these encouraging results motivate future work with improved
tracking based on predictive coding.

4.2 Audio Filtering with Top-Down Predictions
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a) Repeated audio prediction with 10 state updates
per timestep and 5 updates of the sequence prior.
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b) Repeated audio prediction with 15 state updates
per timestep and 25 updates of the sequence prior.

Fig. 3. a) Repeated prediction of a constant sine wave with single layer (left) and hierarchical PCN with
two layers (right). The hierarchical model learns a top-down state prior for the sequence, while the single
layer model has only local context. When convergence in the lowest layer is not guaranteed, such as
with too few gradient descent steps or with inappropriate initialisation of precision, only the hierarchical
model correctly tracks the incoming signal. b) With increased gradient steps for state inference in the
lowest layer both single-layer and hierarchical PCN eventually show accurate posterior predictions
(green). Predictions from the state prior (blue) improve only for the hierarchical model.

Figure 3 shows examples for repeated block-wise prediction of the same audio input
with a single layer PCN and a hierarchical PCN with two layers for different gradient steps.
In both networks, the inferred state and transition weights of the lowest layer are reset after
each sequence prediction. This means that predictions in the single layer PCN are based on
local information, i.e. the previously seen samples in the sequence. The hierarchical PCN
keeps a top-down prediction of the lower layer’s hidden state, providing refined contextual
information for each prediction. This learnable state prior noticeably leads to a shifted starting
point for the lowest layer in the hierarchical PCN in Fig. 3 a), where the lowest layer has
not enough time to converge properly. When initialised with optimised parameters, both
variants are able to approximate the target audio to a reasonable degree and the differences in
prediction (and associated prediction errors) are largely restricted to the start of the sequence,
as visible in Fig. 3 b). This indicates that minimizing prediction error can be solved through
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online inference in independent trials as well as through the more gradual process of weights
learning when information between trials is carried over. As noticeable in both Fig. 3 a) and
b), the learning dynamic of the hierarchical model is significantly more dynamic, since the
weighting of the top-down state prior is slightly adapted at each timestep.

The posterior predictions, indicated in Fig. 3 with green lines, show that the lowest PCN
layer does not directly adapt to the top-down prior, but needs some time to tune the remain-
ing weights to this additional source of information. When the top-down prior is correctly
integrated, however, the hierarchical model quickly improves over the single layer model,
especially with parameter initialisation that prevents full convergence of prediction errors in
the lowest layer.

4.3 Replicating Filter Transfer Functions

We tested the possibility to simulate a Butterworth low-pass (LP) filter, which is widely in
various DSP applications. Figure 4 shows input and output audio signals to the targeted LP
filter and the corresponding in and outputs of a PCN. We test PCNs with single and two
layers on a constantly ascending sine wave tone superimposed on constant white noise. Both
PCN variants are able to replicate the desired transfer function of the LP filter and show the
desired high frequency content removal.
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Fig. 4. Replicating an order 2 Butterworth LP filter. LP filter and PCN remove high frequency contents
and have comparable output magnitudes. As the prediction starts with randomized states and without
top-down prior, the prediction error (red) is higher at the sequence start.

5 Conclusion

We presented a gradient-based predictive coding model for audio analysis and synthesis. The
hierarchical model targets biological plausibility through locally informed updates while
still being efficient and accurate enough to replicate classical DSP tasks like filtering and
beat tracking. We reviewed the similarities between the autoregressive state-space models
underlying predictive coding, IIR filters, recurrent neural networks, and Kalman filtering. The
model provides a basis for future work that could approach more complex DSP applications
or subjectivity in artificial music perception.
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Zero-shot Singing Technique Conversion
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Abstract. In this paper we propose modifications to the neural network frame-
work, AutoVC [17] for the task of singing technique conversion. This includes
utilising a pretrained singing technique encoder which extracts technique infor-
mation, upon which a decoder is conditioned during training. By swapping out
a source singer’s technique information for that of the target’s during conver-
sion, the input spectrogram is reconstructed with the target’s technique. We doc-
ument the beneficial effects of omitting the latent loss, the importance of sequen-
tial training, and our process for fine-tuning the bottleneck. We also conducted
a listening study where participants rate the specificity of technique-converted
voices as well as their naturalness. From this we are able to conclude how ef-
fective the technique conversions are and how different conditions affect them,
while assessing the model’s ability to reconstruct its input data.

Keywords: Voice synthesis, singing synthesis, style transfer, neural network,
singing technique, timbre conversion, conditional autoencoder, sequential train-
ing, latent loss

1 Introduction

Voice conversion (VC) is the task of converting the timbre of the voice so that the lin-
guistic content is perceived to be spoken by a different person. It has been explored
in relation to both singing and speech, which both possess different attributes con-
sideration. Singing voice analysis is considerably more focused on sustained notes,
harmonic/rhythmic structure, and relative pitch. In speech, these musical values are
non-existent. Instead there is greater emphasis on aperiodic aspects, such as consonant
utterances and rapidly shifting spectral envelopes. Tasks like VC and text-to-speech are
in far more demand in the industry than singing-related tasks, and have therefore mo-
nopolised the spotlight in voice analysis and synthesis research. The latest approaches
towards VC achieving state-of-the-art conversions utilise probabilistic machine learn-
ing techniques. Public domain speech datasets also vastly overshadow singing datasets
in size and availability [11], and so there is still much to be explored in relation to
singing analysis and synthesis.

In this paper we tackle the task of singing technique conversion (STC) - the task
of converting a singing technique without affecting the perceived identity of the singer,
musical structure or linguistic content. We define singing technique as the method of
� This research is funded by the EPSRC and AHRC Centre for Doctoral Training in Media and

Arts Technology (EP/L01632X/1).
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voice production to achieve different timbres by adjusting the airflow, vocal folds, vocal
tract shape, and sympathetic vibrations in the body [5]. We regard STC as a variation
of voice conversion (VC), where the possibilities of voice transformation are restricted
to be within a realistic variance of timbre for any given singer. We chose the term
singing techniques as opposed to singing style, due to the latter term’s inconsistent use
in literature, often referring to a range of very different audio and musical attributes due
to its lack of reference to a concrete audio or singing concept.

To achieve STC, we apply a neural network model in the form of the conditioned
autoencoder, AutoVC [17]. We discuss certain adaptations made to the architecture and
investigate the effects of training it on different permutations of several datasets. To
evaluate the model’s ability to perform STC, we had participants rate the naturalness of
the voice and guess what the target singing technique was supposed to be. Examples of
audio used in this listening test can be found online.1

Real-time pitch correction algorithms have become commonplace in the music in-
dustry and influence the characteristics of modern pop singers today. We believe that the
refined task of STC could have a similar influence on music production as it opens up
the possibility of artistically manipulating a singer’s performance, rather than just quan-
tising their pitch. Over the last 5 years, many machine-learning approaches have been
proposed to tackle voice transformation for speech (as discussed in the next section),
but much less attention has been given to transforming the expression of the singing
voice.

2 Related Work

Recent research in VC has been based on neural networks, which have influenced the
frameworks proposed in this paper. [15] conditioned an autoencoder (trained on linguis-
tic data) on speaker embeddings generated from a separately trained classifier network.
During inference, these embeddings could be replaced to achieve VC. AutoVC [17]
adapted this method to work with spectrograms, which will be described in detail in
Section 4. This was improved upon by conditioning the network on pitch contours to
enforce prosody during conversion [18], and further disentanglement was achieved for
timbre, pitch contours, rhythm and utterances simultaneously by utilising 3 separate
bottlenecks with different restrictions [19]. [26] achieve VC by using vector quanti-
sation to separate speaker and content information, and later utilised U-nets [21] to
compensate for information lost during vector quantisation.

The application of the variational autoencoder (VAE) is well suited for ‘many-to-
many’ conversions (where all examples used for inference are seen during training).
[16] use fully convolutional VAEs, conditioned on acoustic features, to perform VC.
They combine spectral features of both converted and unconverted reconstructed au-
dio in order to avoid over-smoothing - a known issue with VAEs. While VAEs present
an elegant framework, they produce ‘blurry’ results. Generative Adversarial Networks
(GANs) have been known to reproduce better quality reconstructions of images than
VAEs. However as they come without an autoencoder they are harder to train and suf-
fer from ‘mode collapse’, and there has not yet been an elegant proposal for combining

1 https://github.com/Trebolium/singing technique conversion
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VAEs with GANs [22]. The use of VAEs has the added benefit of utilising unsupervised
learning, which bypasses the issue of low resources regarding labelled singing datasets.
[6] used Gaussian-Mixture VAEs (GMVAEs) for controllable speech synthesis, mod-
elling the different attributes of speech as separate prior distributions before combin-
ing them in a VAE. For singing voice conversion, [13] adapted AutoVC by condition-
ing the network on pitch contours transposed to a suitable register for the converted
singing, achievable through the implementation of a vocoder. [8] utilised a Wasserstein-
GAN framework, using a decoder for pitch contours and another for generating ‘for-
mant masks’. The product of these two decoders is the estimated mel-spectrogram for
singing. They later explored the capabilities of this framework to achieve timbre and
singing style disentanglement [9], where a singing query is converted into a singer
identity embedding and used to condition both the pitch skeleton and formant-mask en-
coders on pitch modulation style and singer timbre, respectively. [10] present the only
other research we know of that addresses STC. They use GMVAEs to model singer and
technique information to perform many-to-many conversions using a VAE architecture
that utilises a convolutional recurrent neural network (CRNN) architecture.

The issue remains however, of what can be done with singing datasets which are
small and few. [13] notes that the generalisation of the AutoVC framework allows it
to be utilised as a Universal Background Model. [1] synthesise monophonic singing
datasets by superimposing pitch contours on existing speech datasets. [3] use several
autoencoder instances, trained separately on vocoder spectral data and music mixtures,
while being conditioned on shared content embeddings and 1-hot speaker embeddings
to produce a final network that is singer-independent and generates monophonic singing
from musical mixtures. [12] generate novel speaker embeddings by combining embed-
dings from existing singers as a method of data augmentation.

3 Architecture

We use the AutoVC framework [17] for singing technique transformation, due to its
elegant method of applying disentanglement. It is also capable of converting between
source and target examples that have not been seen in the training datasets (zero-shot
conversion). In AutoVC, a standard autoencoder architecture is conditioned on speaker
embeddings that uniquely describe the timbre of a speaker to perform VC on spec-
trograms. These embeddings are generated by a pretrained speaker verification net-
work [24]. The spectrograms are concatenated with these speaker embeddings, and fed
through an encoder Ec, after which the encoded information is again concatenated with
speaker embeddings before being fed to the decoder Dc. This conditioning, combined
with careful calibration of an appropriate bottleneck size, allows the autoencoder to dis-
entangle speaker timbre from utterance information. AutoVC also contains a ‘postnet’
convolutional layer which is appended to the decoder to further develop a refined spec-
trogram from the decoder’s output. After training, the speaker embeddings concatenated
at the bottleneck can be swapped out to achieve VC. The loss function for AutoVC is
a weighted combination of the self-reconstruction loss for both the decoder (Ldecoder )
and the postnet (Lpostnet ) output spectrograms, and the latent loss (Llatent ). The latent
loss represents the difference between the bottleneck’s embedding Ec(x) for the input x



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

238

and its reconstructed form Ec(x̂). This is summarised in Equation 1, where µ and λ are
empirically determined weights. Further details of AutoVC’s architecture are given by
[17], which we follow in our implementation except for several adjustments discussed
in this section.

Ltotal = Ldecoder + µLpostnet + λLlatent . (1)

We will herein refer to our implementation of AutoVC as AutoSTC to reflect its
purpose of STC. To facilitate this, we developed our own singing technique encoder
(STE) to replace the external speaker encoder that was used in the original implemen-
tation. The STE is initially trained as a classifier. It takes a mel spectrogram as input,
which is split into chunks of 0.5 seconds. These are fed in parallel through a neural
network consisting of four 2D-convolutional layers (each of which is followed by batch
normalisation, ReLU activation and max-pooling), two dense layers, two BLSTMs, a
simplified attention mechanism [20], two more dense layers and finally a classifica-
tion layer. This architecture was adapted from the VAE used by [10] and influenced
by [4]. This network is able to achieve 86% accuracy when classifying singing tech-
niques within a test set of VocalSet (detailed in Section 4, while our implementation
of a 1D convolutional network on the waveform data as described by [25] only scored
57%. During conversion, the STE’s embedding preceding the classification layer are
used for concatenation and conditioning with AutoVC as described above in place of
the external speaker encoder embeddings.

4 Training and Inference

The Vocalset dataset [25] used to train the STE consists of recordings of 20 singers
performing several musical exercises with different singing techniques. We chose a
subset containing the techniques belt, straight, vibrato, lip trill, vocal fry and breathy,
trimming off excess files that appear in one class but not the other, to yield a balanced
class subset of 1182 examples (roughly 8K seconds). As the dataset is so small we only
partition it into training and test sets by 8:2.

As [13] showed that the sequence of training of different datasets is important, Au-
toSTC was trained using subsets taken from VocalSet, VCTK [23] and the raw singer
recordings from MedleyDB [2] in various permutations. All data was sampled at 16kHz
and transformed into 80-bin mel spectrograms. While being trained on one dataset, Au-
toSTC was simultaneously tested on test sets from all three datasets in between training
iterations (the VocalSet test set was the same set omitted when training the STE). We
recorded the number iterations and loss values for each dataset where the loss showed
no further improvement into Table 1, and transferred the saved neural network param-
eters of a nearby checkpoint to the proceeding dataset training session in the sequence.
We trained AutoSTC once for every permutation of the datasets. Table 1 shows that the
order in which datasets are fed to the network does have a considerable impact on its
loss. The paths Vc->Vs->Md (spanning 750k training steps) and Vc->Md->Vs (500k
steps) led to the lowest loss values for MedleyDb and VocalSet reconstruction respec-
tively, and were used to train models that generated the examples used in our listening
test (see Section 5).
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Table 1. Shows losses and training iterations (in parentheses) for VocalSet (left) and MedleyDB
(right) along alternative paths. The optimum training path is highlighted in bold from left to right.
Training that leads to an increase in loss is indicated with a circumflex, at which point that path
is abandoned. For space, the dataset names are shortened as follows: VCTK:Vc, VocalSet:Vs,
MedleyDB:Md.

Loss-Iteration for Vs
Vs 0.0274(100k) Md ˆVc 0.0653(300k) Md 0.0386(150k) Vs 0.0268(50k)
Vc ˆ Md -

Vs 0.0347(150k)
Md ˆ Vs -
Vs 0.0290(50k) Vc ˆ

Md 0.0500(200k)
Vc ˆ Vc -

Loss-Iteration for Md
Vs 0.0474(150k) Md 0.0265(100k)Vc 0.0479(500k)
Md 0.0295(150k) Vs ˆ
Vc 0.0474(100k) Md 0.0301(50k)

Vs 0.0562(150k)
Md 0.0370(100k) Vs ˆ
Vs ˆ Vc -

Md 0.0367(150k)
Vc ˆ Vc -

We found the L1 loss between decoder/postnet self-reconstructions and the input
encouraged better convergence over L2 loss. We also tested the impact of excluding
the latent loss for 100K steps for both VC and STC tasks. Results showed that training
without latent loss performs significantly better for both tasks. The loss for STC with
latent loss was 0.0237 (and 0.0185 without loss), while spectrograms were blurry and
the audio lacked microtonal variation or vibrato, leaving a ‘bubbliness’ artefact in its
absence. Vowels were also not consistently reproduced. These shortcomings however
are less noticeable for speech than singing. This result is worth highlighting, as latent
loss has been used consistently in frameworks of a similar nature [13, 15, 17].

Further preliminary trials allowed us to fine-tune AutoSTC’s bottleneck. We anal-
ysed the resynthesised audio and noted that the net size of the feature space was more
indicative of audio quality than focusing on time/frequency axis fine-tuning separately.
We estimated the threshold to be a downsampling factor of 16 for the time-axis, with
each timestep containing 32 features. Lower dimensionality representations resulted in
deterioration in the reconstructed audio in a very similar manner to that of the network
with latent loss included.

5 Experiment Design

To evaluate our proposed network’s ability to perform STC, we conducted a listening
study, where 19 participants evaluated the converted audio for specificity and natu-
ralness under the different conditions of models, gender, and source/target techniques
used. The first of the models (Vs1) was trained on VocalSet alone and converted Vo-
calset data. The second (Vs2) was trained using the optimum path for Vocalset presented
in Table 1 to also convert VocalSet data, while the third (M1) used the optimum path
for MedleyDB to convert MedleyDB data. Converted spectrograms were resynthesised
using a pretrained wavenet model provided by the author of the AutoVC paper2. Each
model produced 8 random examples per participant, while adhering to a balanced repre-
sentation of both gender and subset (train/test) conditions. To evaluate naturalness, we
asked participants to consider how synthetic/realistic the voice itself sounded, and rate
them on a scale of 1 (very unnatural) to 5 (very natural). In a separate task to evaluate

2 https://github.com/auspicious3000/autovc



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

240

specificity, participants were given a reference recording featuring a converted singing
technique along with 6 unlabelled candidate recordings from the same singer to choose
from. These candidate recordings were randomly selected from the relevant dataset par-
tition, so that they each featured 1 of the 6 potential target techniques assigned to the
reference recording. Participants were asked to select one recording they thought fea-
tured a singing technique closest to that of the reference recording, or more if the answer
seemed ambiguous. In the case where reference recordings were converted MedleyDB
examples, no ground truth labels existed, and so a singer of the same gender was ran-
domly chosen from Vocalset to represent the 6 candidate singing techniques instead.
Each of these tasks was presented 24 times. 6 resynthesised recordings of unconverted
audio were also evaluated for naturalness. The interface was built using the Web Audio
Evaluation Tool [7].

6 Results

The Mean Opinion Score (MOS) for unconverted data was 3.75 ± 0.34, and is impor-
tant to consider when analysing the results of the study. This highlights the fact that a
considerable amount of perceived naturalness has already been lost during the wavenet
resynthesis process, and that the MOS values for technique conversion should be con-
sidered with this in mind. It is the comparison between conditions that we are interested
in.

To calculate the similarity score S for each condition, we used the formula in Equa-
tion 2, where Pn is a binary vector reflecting a participant’s true/false predictions (iden-
tifying whether each candidate technique was the same as what was presented in the
reference audio) for the nth task, Cn is a 1-hot vector reflecting the correct technique
for the task, and N is the total number of tasks in the given condition. The similar-
ity score is an average count of correct predictions weighted by the reciprocal of the
number of predictions made for the corresponding task.

S =
1

N

N∑
n=1

Pn.Cn

||Pn||1
. (2)

Figure 1 displays the results obtained from the listening study. The top graph dis-
plays MOS values for naturalness, with whiskers indicating the confidence intervals.
The lower graph displays similarity scores. The combination of these two graphs give
us insight into how each of our models perform, and what conditions influence the nat-
uralness and specificity of the converted singing.

We detected from a Spearman’s rank analysis that MOS and similarity scores were
not significantly correlated. Similarity scores across all conditions measure higher than
the chance level (0.16), which suggests that our models have some success in converting
to the target techniques. The condition of source-technique groups does not significantly
influence recognisability of the converted singing technique. However, the data would
suggest that the features of the target techniques trill and breathy are significantly more
distinguishable than the rest. Vibrato scored the lowest for similarity, suggesting that
this was a particularly difficult technique to synthesise convincingly. The reason for
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Fig. 1. Top: Bar graph showing naturalness (MOS values and confidence intervals) for all con-
ditions. The colours group together the conditions for (left to right): models, subsets, genders,
source technique and target technique. Bottom: Bar graph showing similarity scores determined
by Equation 2, relative to correct answers.

this is most likely due to the fact that VocalSet, upon which the STE network was
trained, contains numerous examples labelled as belt and straight, while still featuring
a considerable amount of frequency modulation (a unique feature of vibrato), making
it difficult for AutoSTC to disentangle vibrato from other techniques effectively. It may
also be the case that AutoSTC has difficulty disentangling vibrato from pitch contours.
Alternatively it is possible that our models instead focused on altering the phonation
modes associated with vibrato, which would be considerably less obvious to listeners
than identifying whether frequency modulation is occurring.

The inclusion of all datasets in training Vs2 seemingly diminished its ability to
accurately convert techniques (although the difference was not statistically significant).
The M1 model scored significantly worse than the other models, which tells us that
the features learned to generate technique embeddings from the STE network were not
generalisable to data outside the dataset the VTE was trained on. There was also no
statistically significant difference between gender and subset similarity scores.

In regards to MOS results, the target technique trill scored lowest, suggesting that
conversions to a trill technique may sound unnatural. Vs2 samples were significantly
higher than Vs1 and M1, which suggests that providing the network with multiple
datasets does improve its ability to synthesise natural sounding data. The target tech-
nique condition vibrato scored the highest, but as mentioned above, this may be be-
cause the network is making changes more subtle than the frequency modulation which
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lessens the amount of transformation required, causing less synthetic artefacts. It is also
perfectly possible that participants simply perceive the singing voice to be more natural
when vibrato is present.

7 Conclusion

In this paper we have presented a network for vocal technique classification, and the
first network to perform zero-shot conversion on singing techniques, achieving above
chance level for all tested conditions. We have demonstrated that omitting latent loss
and choosing the order in which AutoSTC was fed different datasets significantly di-
minished its reconstruction loss, improving its ability to reconstruct mel spectrograms.
However we can conclude from the results of the listening study that this does not have
any significant effect on AutoSTC’s ability to perform technique conversion and may
even diminish it. We therefore conclude that the features generated by supervised learn-
ing on the labelled VocalSet dataset are not sufficient to generalise to recordings of
other singers. We also consider that the appearance of frequency modulation in other
techniques in VocalSet may have forced the network to give less importance to this
vibrato feature (we have however witnessed conversions where frequency modulation
was synthesised, but in very limited cases, so we can not rule out the possibility that
the AutoSTC framework is incapable of converting singing technique features beyond
their spectral filter properties). The findings of our listening study are in agreement the
vocal timbre maps generated in our previous research [14].

Augmentation techniques such as those discussed in Section 2 may improve the gen-
eralisation of the VTE to unseen data. We would also like to apply the Generalised End-
to-End Loss techniques from [24] to the VTE and fine-tune its output embedding size.
Due to shortcomings in labelled datasets, we will explore unsupervised/semi-supervised
networks such as VAEs. It may also be worth investigating how AutoSTC performs
when we condition it on further attributes such as speaker identity, pitch contours and
vowel sounds. As we consider STC to be a restricted variation of VC and the fact that
there are considerably larger datasets for speech, it may also be worth exploring the
effects of pre-training an AutoVC framework for VC before switching its speaker en-
coder for the singing technique encoder and training it for STC. In future work we will
also consider alternative options to the speech-trained wavenet vocoder as this has in-
troduced artefacts to the audio that likely lowered MOS ratings for all audio. We have
also observed that AutoSTC was unintentionally able to remove vibrato from singing
when underfitting, which may be a capability worth fine-tuning in future work.
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Abstract. Auditory roughness is a perceptual attribute at the basis of
phenomena such as consonance and dissonance in music. The psychophysical
correlates of this attribute are often studied by combining two monochromatic
tones slightly separated in frequency, leading to more or less rapid beatings.
Interestingly, roughness is not limited to the auditory modality and it is possible
to evoke the same kind of sensation through the tactile modality by using a
vibrotactile actuator. Whether or not audio and tactile modalities share the same
perceptual roughness properties is still an open question that may reveal
common sensory processes between the two modalities. Here we investigate
this question in 2 pairwise comparison experiments unveiling roughness curves
in audio and tactile modalities. The results reveal similar roughness curves in
both modalities, which suggests a common way of processing and perceiving
beatings.

Keywords: Audio-tactile, Roughness, Beatings, Critical bands

1 Introduction

Auditory roughness probes the fundamental ability of audition to disentangle
harmonic stimuli, a fundamental skill to perceive speech (Arnal et al., 2015), and
music (Helmholtz, 1885; Plomb & Levelt, 1965) properties. This phenomenon can be
described as the perception of very fast fluctuations in sounds. To understand how our
ears deal with complex mixtures of harmonics (Vassilaki, 2001), a historical body of
works has used basic stimuli by combining monochromatic tones. It is now well
known that for stimuli composed of two monochromatic tones, the sensation of
roughness is driven by the space between the frequencies of the components. The
roughness first increases when the frequency ratio between components increases and
reaches a maximum before it decreases with respect to the increasing frequency ratio.
Figure 1 presents a typical auditory roughness curve for a sum of two monochromatic
tones . When the frequency ratio 𝛼𝛼=f2/f1 is small,𝑠𝑠(𝑡𝑡) = 𝑠𝑠𝑖𝑖𝑛𝑛(2π𝑓𝑓

1
𝑡𝑡) +  𝑠𝑠𝑖𝑖𝑛𝑛(2π𝑓𝑓

2
𝑡𝑡)

the combination of tones tends to be perceived as one tone slowly modulated by the
other one. When the frequency ratio increases, a sensation of roughness appears. As 𝛼𝛼
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becomes even larger, the perceived roughness falls and two the two tones are
perceived separately. This theoretical roughness curve is defined by

with b1 = 3.5, b2 = 5.75, ,𝑟𝑟(𝑓𝑓
1
, 𝑓𝑓

2
) = 𝑒𝑒

−𝑏𝑏
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𝑓𝑓
1
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s1=0.0207 and s2 = 18.96 (Vassilakis, 2001).
Such a phenomenon reveals the existence of auditory critical bands, a fundamental
characteristic of auditory filters (Terhardt, 1974). While the auditory perception of
such phenomena has been largely studied, it is not known whether other modalities
such as touch, elicit similar behaviors (Makous et al., 1995). Interestingly, it is
possible to produce similar stimuli as in auditory experiments with vibrotactile
actuators. It would therefore be interesting to check whether roughness perception is
shared between auditory and tactile modalities. This would strongly suggest that they
might also share mechanistic properties during the processing of vibrations. In a larger
multisensory perspective, we may wonder how this information is processed and in
particular how the information is shared between the auditory and tactile inputs. Is it
possible to influence auditory roughness with tactile feedback? And conversely, might
a smooth surface be perceived as rough when touched in presence of a rough sound?

Fig. 1. Typical auditory roughness curve of a sum of two monochromatic tones and
description of the three kinds of sensations provoked by pairs of pure tones for
f1=200 Hz (Vassilakis, 2001).

In this paper, we investigated the perception of roughness through an experiment that
was divided in two parts, one with audio stimuli and the other one with tactile stimuli.
The results are presented as audio and tactile roughness curves obtained from pairwise
comparisons.
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2 Method

2.1 Participants

18 subjects, 8 women and 10 men (Mean=30 years old, between 21 and 57 years old),
15 right-handed and 3 left-handed, voluntarily took part in the experiment. None of
them reported having any auditory problems or skin concerns. The participants gave
their informed consent before the experiment. The experiment lasted about 1 hour.

2.2 Audio stimuli

Audio stimuli were pairs of sounds, each composed of the sum of two monochromatic
tones of frequencies f1 and f2=𝛼𝛼f1, of duration 1 second, and separated by 800ms. 𝛼𝛼 is a
coefficient between 1 and 2 that determines the frequency ratio between the two
frequencies. When 𝛼𝛼=1, the frequencies are the same ( f1=f2), which corresponds to
unison, and when 𝛼𝛼=2 the tones are separated by an octave f2=2f1:

.𝑠𝑠(𝑡𝑡) = 𝑠𝑠𝑖𝑖𝑛𝑛(2π𝑓𝑓
1
𝑡𝑡) +  𝑠𝑠𝑖𝑖𝑛𝑛(2π𝑓𝑓

2
𝑡𝑡)

Twelve values of 𝛼𝛼 were chosen (1, 1.01, 1.02, 1.03, 1.05, 1.10, 1.15, 1.20, 1.25, 1.35,
1.50, 2.00) leading to 66 comparison pairs for one block. Audio stimuli were
compared for 6 frequency conditions (f1 = 50, 100, 200, 300, 600, 1200 Hz) leading to
6 blocks of 66 pairs (=396 pairs). Sounds were presented through Sennheiser HD-650
headphones at a sampling rate of 44100 Hz powered by a Pioneer A-209R audio
amplifier.

2.3 Tactile stimuli

Tactile stimuli were generated with the same procedure as the audio stimuli for 4
frequency conditions only (f1 = 50, 100, 200, 300 Hz). Frequencies above 800 Hz are
indeed not perceptible by the human tactile sensory system (Verrillo, 1969). Hence, 4
blocks of 66 pairs (=264 pairs) were presented through an Actronika HapCoil-One
vibrotactile actuator (dimensions: 11.5 × 12 × 37.7 mm3, acceleration: 8 g-pp,
frequency bandwidth: 10 to 1000 Hz, resonant frequency: 65 Hz). This kind of
actuator has already been used in the literature to render the sensation of textures with
vibrations (Rocchesso et al., 2016). The actuator was powered by a Pioneer A-209R
audio amplifier. The subjects were asked to grab the vibrotactile actuator between the
thumb and the index of their right hand. During the tactile experiment, participants
wore noise canceling headphones to prevent them from using auditory cues.

2.4 Tasks and procedure

In each experiment, participants were seated in front of a computer screen in a quiet
room. For each subject, the pairs of stimuli were presented in randomized order. For
each pair, the presentation order was also randomized. In each experiment and for
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each pair of sounds, subjects were asked to judge which tone combination (or tactile
stimulation) was the most “granular” (granuleux in French). As several participants
had a musical background, we avoided the terms rough and pleasant that might also
have been used. Answers were collected with a keyboard and the interface was
designed with Max/MSP software to display either audio or tactile stimuli. The
volume and the intensity of audio and tactile stimuli were set constant during the
whole experiment.

2.5 Data analysis

In each experiment, the data were analyzed with the Bradley-Terry model (Hunter,
2004). This probabilistic model allows us to predict the outcome of a pairwise
comparison from a win matrix. Practically, for each subject, a win matrix was
obtained from the 66 pairwise comparisons which were sorted as follows: the cell (i,j)
corresponds to the number of times the sound i has been judged rougher than the
sound j. The win matrices were then aggregated between subjects and an iterative
algorithm was used to fit the Bradley-Terry probabilistic model. Hence, for each
frequency ratio, we obtained the probability that the corresponding combination tone
was judged as rough compared to another combination. In the end, for the sake of
comparison between experiments and with the literature, this probability was
normalized into a perceived roughness score.

3 Results

The results, presented in Figure 2, exhibit that auditory and tactile roughness curves
are very close in the 4 frequency conditions tested. Interestingly, the roughness curves
obtained are also coherent with the theoretical roughness curve proposed by
Vassilakis (2001). These results might suggest that auditory and tactile modalities
share common principles in the perception of roughness and beatings. It would be of
great relevance as it may for the first time lead to a common way between the two
modalities of modeling roughness within the critical band framework. Secondly, it
might further shed light on more fine similarities in the temporal processing of
vibrations through these two modalities. Recent evidences have for instance shown
that rhythm perception is shared between audio and haptics (Bernard et al., 2021). Our
current findings suggest that these results could be extended to the perception of
beating and roughness.
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Fig. 2. Audio (blue line) and tactile (yellow line) roughness curves obtained from the
experiment. The two modalities elicit similar roughness maxima and are coherent
with the theoretical auditory roughness model proposed by Vassilakis (2001) (dashed
line). The stimuli with f1 = 600 and 1200 Hz were presented only for the audio
condition, because they are beyond the frequency bandwidth of tactile perception.

4 Discussion

As it has already been observed in audition (Vassilakis, 2001), the position of
maximal roughness perception changes according to the lower frequency f1 also in the
tactile modality. It is noteworthy that, in audition, the position of the maximum varies
much more at lower frequencies, when the frequencies are inside the tactile
perception range. In addition to these unimodal studies, it would be interesting to run
a larger study in which subjects are asked to judge the roughness of audio-tactile
stimuli. The ultimate goal is indeed to decipher and to model the way our perceptual
systems combine audio and tactile senses into a coherent percept. We in particular
hope to observe interactions between the two modalities and to observe how one
modality may enhance the perception of roughness in the other. This has already been
observed in several multisensory situations (Jousmäki & Hari, 1998, Guest et al.,
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2002), and such cases are of great relevance to understand the fine mechanistic bases
of human perceptual systems.
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Abstract. This paper discusses composing works for interactive live performance
based on the comparison between recent artworks and experimental work meth-
ods of the two authors. We compare the different interaction design strategies
employed and discuss the factors which influenced the choice of methods for
motion tracking and their influence on body movements when coupled with the
generation of sound during the performance. We consider the resulting artworks
as hybrid artforms that combine aspects of music composition, improvised sound
performance, and stage performance or dance. A high-level comparison of the
technical and practical aspects of said works is provided. It can be argued that the
new expressive potential and the wealth of possibilities to be explored warrants
further work in this direction, and that systematic comparison of the interactive
characteristics and expressive affordances of the systems developed are useful in
guiding further research in the development of novel hybrid performance forms.

Keywords: Interactive Music Performance, Audio-Visual Art, Gesture Mapping,
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1 Introduction

In acoustic music performance we can say that the actions or gestures of performers
also provide visual cues conveying the character and shape of sound. At the same time,
a performer’s actions or gestures are directly coupled to the characteristics of produced
sound and its musical expressive characteristics. Overall, we can say that instrumental
music performance is a form of multimodal interaction synthesis [1].

The shapes of performer’s gestures are dictated to a large extent by the physical
properties of the instrument they are using, and appropriate techniques of performance
are required to play it functionally and effectively. In addition, performers’ intentions
with regard to musical expression influence the form of characteristic gesture shapes.
Therefore, acoustic music performance creates a fairly strict framework within which
performers must stay in order to interact with their instruments in a musically effective
way. The actual shape of gestures is usually regarded as playing an auxiliary role in the
experience of the performance.
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However, in the context of interactive computer music composition we can create
new relationships between performance gestures and sound and we can choose more
freely both the types of movements and the degree and type of their influence on the
resulting sound. This leaves greater margins of freedom to explore the expressive po-
tential of performance gestures from the viewpoint of their visual expressive impact.
This leads to a hybrid form of expressive art that lies between visual art and music or
other types of stage performance.

This paper discusses composing works for interactive live performance based on
the comparison between recent artworks and experimental work methods of the two
authors. The works are: People in the Dunes, [2] and [3] created by Haruka Hirayama
in collaboration with a visual artist and choreographer Bettina Hoffmann, and IDE-
Fantasy, created by Iannis Zannos in collaboration with dancers Jun Takahashi and
Asayo Hisai (Japan) and Tasos Pappas-Petrides, Vasiliki Florou, Natali Mandila and
Mary Randou (Greece) [4].

We compare the different interaction design strategies employed in the above works
and discuss the factors which influenced the choice of methods for motion tracking
and their influence on body movements during the performance, when directly cou-
pled with the generation of sound during the performance. We consider the resulting
artworks as hybrid art forms that combine aspects of music composition, improvised
sound performance, and stage performance or dance. We discuss the degree to which
system design allowing dancers to develop their individual or intuitive style of perfor-
mance, with reference to the affordances created by the technical characteristics of the
systems employed. Several unresolved problems arise with regard to both performance
practice and the aesthetic appreciation of such works.

The extent of possible couplings of body movement to sound forms is vast, and the
task of choosing or designing interaction strategies is daunting. This problem is further-
more compounded by technical limits in the accuracy and response time of movement
tracking devices and by the complex, at times almost entirely unpredictable behaviour
of the couplings between movement and the resulting sounds, both in terms of the phys-
ical or mathematical behaviour and from the perceptual viewpoint. However, we argue
that the new expressive potential and the amount of possibilities to be explored warrants
further work in this direction, and that systematic comparison of the interactive char-
acteristics and expressive affordances of the systems developed are useful in guiding
further research in the development of novel hybrid performance forms. The present
paper presents a simple methodology based on a classification of the interaction tech-
niques used in the works mentioned, and evaluating their potential based on practical
factors experienced during our work.

2 The Performances

2.1 People in the Dunes

The People in the Dunes project explores expressive potential of performance with real-
time sound processing as a live audio-visual art that exists at the intersection of inter-
active music performance and visual art involving human bodies. In this work, human
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body movement plays a theatrical role while at the same time working as a medium for
sound conveyance and a form of music embodiment in a manner similar to instrumental
performance in music.

The People in the Dunes project consists of three works: People in the Dunes I, The
Embodiment I - Strings, and People in the Dunes II. These have been created and per-
formed in Tokyo, Montreal, and Gatineau in Canada between 2018 and 2020. The title
of the project is inspired by the novel The Woman in the Dunes by Kobo Abe, that de-
picts the situation of a man trapped in the dunes fighting the ever flowing sand, reflecting
about his life and in the end becoming aware of its essence and finding freedom: how
human bodies and movements eventually find new directions under the influence of the
forces acting from multiple directions between multiple individual actors, particularly
under restricted circumstances? This project has been further developed by involving
local dancers and instrumentalits working in Butoh and other contemporary styles.

2.2 IDE-Fantasy

The objective of IDE-Fantasy is to create an interactive performance which can be re-
alized in remote locations at the same time, through the collaboration of dancers in
each location, and relying entirely on motion capture data from the dancers. The piece
eschews any transmission of images or sounds between the locations of the perfor-
mances. The presence of the performers is transmitted between the remote stages of the
performances based solely on the influence of their tracked movements on the sounds
which are produced locally at each stage. Both the performers and the audience must
rely on the sounds locally created by sound synthesis software to reconstruct in their
imagination the actions or states of the performers in remote locations. The objective
is to explore the narrative and interpretive potential of strictly reduced means for rep-
resentation and the capability for sensing the states and of the performers based on the
data traces left by their body movements, but without having direct visual or auditory
contact.

The subject matter of the performance is inspired by the story of Izutsu, a Japanese
Noh Play, which talks of the encounter of a monk with the ghost of a woman that is
longing for reunion with her lover and husband from her previous life. Additionally, as
a cultural reflection of the idea of correspondences between remote locations, symbolic
correspondences between Izutsu and the myths of Echo and Narcissus and of Daphnis
and Chloe are being explored for future realisations of this work.

The piece was developed through a series of rehearsals in Tokyo, Athens and Corfu.
So far, telematic rehearsals have been realised between Athens and Corfu and Athens
and Jerusalem. A performance between Stanford (USA), Athens and Corfu was pre-
sented in March 2019 at the LAC19 conference. This performance was combined with
a presentation of the software framework used to create the piece [5]. A local only
performance was presented at TAMA Music Festival in 2020. Further realisations are
being prepared in conjunction with ongoing rehearsals and the development of new
techniques for data capture and transmission.
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3 Methodolody, Design Considerations, Discussion

From the perspective of an interactive music composer, the following research questions
are addressed in both projects discussed: What are the expressive possibilities of music
composition motivated by performance gestures? What is the theoretical framework
required to create links between the shape formed by human bodies and sound, and
between changes of shapes and sound transformations? Also, what are the technical
means for linking physical body movement to sound production, and how can these
influence the artistic process and its final outcome?

In the case of People in the Dunes, the experience of the composer’s previous work
FRISKOTO raised questions about the difference between performance gestures and
control gestures in music. The hypothesis was posed, that the difference consists in
the possibility of perceiving gestures as the animating force of music or not [1]. To
make bodily movement perceivable as an animating force of music it is important to
develop a system where sound can give an instant reaction to the movement, and vice
versa. Furthermore, it is important to consider the correspondences between visual and
auditory percepts. Visual and auditory sensations need to be properly coordinated or
corresponded, in other words, their correspondences should be readily recognizable to
performers as well as viewers. The following aspects guided the creative process and
the design of the performances as a whole:

1. The availability of movement capture technologies and their technical performance
characteristics (accuracy, reliability, temporal and measuring resolution, latency);

2. Affordances of the movement tracking devices for the performers (which move-
ments are easy and comfortable for the performers to execute while using the track-
ing devices, and how do they understand the relationship between their movements
and the resulting data when using the device);

3. Design of the mechanisms for influencing the sound produced based on the data
received from the tracking devices;

4. Correspondence of the perceptual characteristics of the available or chosen sonic
vocabulary to those of the gestural vocabulary developed by the performers;

5. Narrative effects of the sequential ordering of sequence of motions types and asso-
ciated sound textures. The alternation of different motion types and types of sound
textures produced by these can provide cues to the audience for understanding the
causal relationship between movements and sounds, and thus aid their understand-
ing of or identification with the performance. In addition, the ordering of motion
types and sound textures can form a type of sequence of scenes that create the
impression of a narrative, albeit of a fairly abstract and vague type. This plays an
important role in capturing the attention of the audience, by offering hints for fabri-
cating an interpretation of the events of the performance in their own imagination;

6. Subtle changes and minimalism. At certain parts of the performance, it is helpful
to heighten the sensibility and awareness of the audience by purposely focusing on
minute movements or changes of sound. This can intensify the sense of tension and
the interpretive potential of the piece.

In the development of IDE-Fantasy we started with simple mappings between move-
ment and synthesis parameters as few as 1 or 2, and gradually introduced more param-
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eters. Even extremely simple parameter - sound mappings proved to be useful perfor-
mance tools for dancers, providing them with instruments which they could explore
very easily, but where nevertheless rich and responsive enough for short improvisa-
tions. In this approach, 3 or 4 parameters were already sensed as being hardly possible
to handle or adapt to. 6 parameters per person were definitely outside the realm of feasi-
ble. We also experimented with 6-parameter chaotic algorithms cojointly performed by
two dancers. These did capture the attention of the performers, even though they proved
to be difficult to master. In table (1) we summarise the techniques used in our works.

People in the Dunes I People in the Dunes II IDE-Fantasy
1. Movement
tracking device

Kinect
Built-in sensors of
iPhone

a) 9-axis movement
b) 3-axis accelerometers

2. Number of
attached sensors
per person

- 2 iPhones per person Up to 2 per person

3. Sensor positioning -
Left and right
lower arms

Wrists

4. Tracking information
Horizontal
boundary position

Acceleration,
Magnetic field,
Gyroscope

Acceleration,
Magnetic field,
Gyroscope

5. Data transmission
protocol

USB WiFi
WiFi,
Xbee Mesh Network

6. Software(s) for
interactive systems

Max, Jitter Max, ZIGSIM (iOS) SuperCollider

7. Audio source for
composition

a) Boundary
microphones
b) Prerecorded
voice sound

Prerecorded voice,
cello, traffic,
environmental sound,
synthesisers

a) Prerecorded samples
b) Simple or Complex
UnitGenerator graphs
with or without feedback

Table 1. Technologies used in People in the Dunes and IDE Fantasy

4 Conclusion, Future Work

In all, a common trait observable in both works discussed here is the use of the technical
affordances of motion tracking devices and sound generation or processing algorithms
to design a sort of performance language which combines body movements and their
assigned sound textures or events to create narratives of a more or less abstract type. In
both pieces, concrete narratives of previously existing and well known works provided
a reference framework in order to create the more abstract narrative of the pieces.

In conclusion, the main challenges confronting this kind of work stem from the ab-
stract and indirect nature of digital mediation between bodily movement and generated
audiovisual stimuli. The causal relationship between movement and generated sound
or video tends to be difficult to recognise. In some cases it can be entirely absent, as
is when employing chaotic synthesis algorithms. To counterbalance these obstacles, it
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is necessary to create interpretive or narrative links with the performers and the audi-
ence. Simple mappings and complex or chaotic correspondences both present advan-
tages and disadvantages, and the decisive design criteria for developing a functioning
performance seem to lie in semiotic domains such as the choice of sounds, images, and
movements for their associative semantic charge, and the devising of narrative devices
through trial and error during rehearsals. Currently we are interested in employing Ma-
chine Learning algorithms in order to devise improved methods for translating motion
to sound, and in particular in experimenting with unsupervised learning and in adaptive
techniques that modify their behaviour during the performance itself.

At the same time, the characteristics and affordances of motion tracking devices
(shapes of sensors, kind of detecting data, mobility etc.) have a direct impact on the
available movements and thereby on the kind of body movement language that the
performers develop. We feel that a combination of different type of tracking method
can enhance performance expression.

The body is capable of constantly adapting and changing shapes or forms [6]. We
realised that there is an interdependence between isolated movements of individual parts
of the body and the perception of forms created by movements of the body as a whole.
This will serve as a guiding principle for the currently planned experiments for future
work.
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Abstract. The demands on creatives to complete a jingle or a piece of music even
under time pressure are growing. This paper analyzes Google’s “Magenta” to
identify its possibilities for a more effective production of electronic dance music
(EDM), especially in terms of time, without a loss of subjective listening pleasure.
For this purpose, the process of EDM music production, which includes artificial
intelligence, was analyzed. With a subsequent survey, it was determined whether
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1 Introduction

Artificial intelligence is used more and more in everyday life and therefore discussed
controversially in media. In this text AI is understood as a digital tool to support humans
in their creative tasks. However, when one reads about AI in general, some authors find
it obviously still difficult to think of AI in connection with creative tasks [6]. There are
reservations of creative processes being mapped by a computer [8]. Music is one such
creative construct, cause it is capable of triggering feelings in people and amplifying
or even influencing moods. Interestingly, most listeners don’t notice how much music
composition is already influenced by AI and that nowadays many artists have already
introduced AI into their creative production work flow [3]. Still, it is not a question
about whether AI will make the human composer obsolete, but how creative people use
AI in their process [9]. Therefore, the aim of this work is to find out how the use of AI
can affect the efficiency of the music production process and whether it has an influence
on how the music is perceived. The main focus was efficiency in time and to figure in
which steps within the production, in the case of Electronic Dance Music (EDM), an AI
can be particularly helpful.

2 Related Work

There is an area of application for artificial intelligence in almost every field. Among
others, also in the creative areas of music and art. Because AI has so many forms, re-
searchers divide it into the subfields of automation, machine learning, neural networks,
and deep learning [2]. A common form of neural network is the Convolutional Neural



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

258

Network (CNNs). In this paper, and the Magenta project respectively, Recurrent Neural
Networks (RNNs) and the Long Short-Term Memory Network (LSTM), a type of RNN,
are central [11].
While CNNs tend to be hierarchical, RNNs operate more sequentially [1]. Therefore,
CNNs are often used for classification tasks such as text recognition, whereas RNNs are
more flexible and are therefore increasingly used for language processing and creative
tasks such as music generation [11]. The project “Magenta”, placed under Open Source
by Google is a project which explores machine learning in a creative context. Magenta
Studio, basically a collection of music plugins, uses RNN and LSTM networks. To un-
derstand how a computer can utilize this to make music, it is important to take a closer
look at these RNNs. An RNN is a class of neural networks used to model sequence
data. In an RNN, the connections between artificial neurons form a circuit. For many
applications such as speech and text, outputs can depend on previous inputs and out-
puts. The key concept of RNNs is to use sequential information. RNNs are thus given
a “memory” in the form of the information and data that have been processed so far
[1]. Related to the music context in this paper, this means that the neural network can,
e.g. recognize which notes it has generated in previous measures and is able to adjust
the next measure to sound coherent. The size of the “memory” determines how many
notes, or even bars the neural network can look back. The goal is to have the generated
sounds or musical sequences which contain repetition, as repetition is one core feature
in music.

3 Environment Setup and AI-Created Music

Magenta is the name of several research projects by Google. The program Magenta
Studio, serves as AI support for digital music producers, as a standalone application or
when used as a Plugin e.g. with the Digital Audio Workstation Ableton Live. Magenta
has five different models, using different neural network types. In this study LSTM net-
works, a type of RNN, are used. An example of an LSTM network is the DrumsRNN
model. Another example is the MelodyRNN model, which has the same structure but
is programmed for melody generation [4]. Each model has different configurations that
set the way in which it encodes the input data. For example, the DrumsRNN model
has a one drum configuration, which stores a drum sequence in a class, and a drum kit
configuration, which splits a drum sequence into nine different instruments (kick, clap,
hi-hat, etc.) and adjusts the attention length [4]. Magenta provides many pretrained
models for download on its site, here the models “DrumsRNN”, “MelodyRNN” and
“PolyphonyRNN” were used.
To structure the process of digital music production and to make the influence of AI in
this process more comprehensible, we divided it into three levels. The higher the level,
the less human involvement in the production process.
Level 1 - Inspiration: In this stage, the human producer is supported or inspired by
the AI. For example: AI generated melodies are listened to. Being inspired, the human
producer composes a new melody which contains no or hardly any parts of the original
AI melody.
Level 2 - AI Assistance/Co-production: In AI assistance, one gets support from an AI
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in the creative process. Here, bigger parts of AI-generated music can be incorporated
into the composition. The AI can be used to help, e.g. by suggesting subsequent notes.
Since the AI and human are both working on the same piece, they can both inspire each
other.
Level 3 - Automation: In automation, an AI generates new music on its own without in-
put. The producer has no influence on the results. One of many examples of autonomous
music generation would be Magenta’s Generate function [10]. One other example is
AIVA, which stands for Artificial Intelligence Virtual Artist. AIVA has already released
self-produced albums in the EDM genre. It was created in early 2016 and has been
under constant development ever since [5].

4 Tests Structure and Efficiency Evaluation

First three simple EDM tracks, according to the three stages, each consisting of the
three main components bass, chords and melody, were composed. For the later evalu-
ation, some measurement data had to be collected. Thus, the production duration and
effort were measured based on mouse movement, mouse clicks and key usage, utilizing
the free software Mousotron (Win; version 12.1; Black Sun Software 2017). In order not
to confuse the participants of the later survey by different drums and drum patterns in
the songs, an identical one was adopted here for all. For the music production itself the
Digital Audio Workstation Studio FL (Win; version 20.8; Image-Line Software; 2020)
was used. One aim was to verify whether the introduction of AI into the production pro-
cess is suitable for speeding up and simplifying music production. For this purpose, the
individual steps of the production were calculated, and all mouse clicks and movement
were measured as the second and third measured values.
The evaluation (collecting data of mouse and keyboard usage) was carried out through
the different phases to determine and track the highest increase in efficiency on specific
production phases and production steps. In this way, phases for which AI is particularly
suitable can be identified (see also Table 1).
Preparation phase: In the preparation phase, human production performed best. Prepa-
ration took just under a minute, with both AI automation and AI assistance at around
three minutes.
Composition phase: In the composition phase, the tendency of the first phase changes.
Here, human production took by far the longest at around nine minutes. With the help
of AI assistance and AI automation, up to 85% of the time used could be saved.
Editing phase 1 (without mixing and sound design): In this phase, it is noticeable that
the AI assistance has particularly high values. To adjust an AI given melody to one’s
own desires might take time. The duration of the production phase was therefore about
four to five times longer for the AI assistance than for the other two production types.
Editing phase 2 (mixing and sound design): Great inspiration can come from sound
design, as melodies can also sound very different depending on the sound. Since a pro-
ducer usually creates a melody after the sound design, this phase also takes about twice
as long as the other production types. With the support of AI, one comes to a time sav-
ing of about 65% here. The AI assistance has the lowest effort in this phase, but this
could change if the experiment is performed multiple times.
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Human production took the longest in terms of total production time. However, this is
closely followed by AI assistance. The use of AI automation reduced the duration of
production by 40%. For composition only (without processing phase 2), there was even
a 42% reduction. AI assistance took about 23% longer than a human production in the
pure composition process.

Phase Song Duration Mouse clicks Mouse distance Keystrokes
Preparation Human production 01:12 22 3,51 24

Automation 03:20 64 18,56 76
AI-Assistance 02:52 53 15,45 57

Composition Human production 09:07 203 20,57 239
Automation 01:43 16 1,41 12
AI-Assistance 01:23 16 1,56 14

Editing 1 Human production 02:34 41 5,87 12
Automation 03:02 36 7,19 95
AI-Assistance 13:01 227 30,28 433

Editing 2 Human production 07:48 141 21,34 78
Automation 03:47 67 12,17 67
AI-Assistance 02:34 40 8,41 52

Table 1. Measurements in different production phases

5 Listening Evaluation

The second aim of this study was to find out how listeners like the generated songs and
whether they can tell the difference between an AI-generated and a human production.
To investigate these questions, 50 participants with different musical backgrounds and
individual tastes (in balanced proportions) were asked to do an online questionnaire
stating their opinions about the three generated songs.
After general questions (age, gender, knowledge/involvement in music and knowledge
of EDM), the participants listened to the songs and were asked to rate the songs based on
the following eight evaluation criteria: Creativity, Recognition Value, Arrangement (of
a song), Cohesiveness, Variety of Tones, Energy, Danceability, and Emotion. Through a
study conducted by the University of California Irvine, these criteria were identified as
crucial. The study found that songs are especially popular when they are more upbeat
and danceable than other songs [7]. In addition, dynamics and the mood of the listeners
play a role [7]. Other criteria such as the vocals or the genre are not considered in this
paper it focuses exclusively on instrumental EDM music.
The participants could rate the different criteria from 1 to 5 points. One meaning low
and five meaning high. All points from all 50 participants that were given for one song
were added to an overall score for that song (see Table 2).
Song 1 - Automation: The first song was generated by the AI alone. The creativity of
the song was rated an average of 3 and is therefore exactly in the middle of the scale.
The recognition score averaged 2.7 points and the arrangement was rated at 2.76 points
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Song Creativity
Value

Recognition
of tones

Arrangement
Cohesiveness

of Tones
Variety

Energy Danceability Emotion

1 3 2.7 2.76 3.22 3.19 3.8 3.4 2.47
2 3.39 3.43 3.8 3.76 3.27 3.43 3.65 3.14
3 3.82 3.58 3.56 3.39 3.37 3.66 3.37 2.98

Table 2. Results of the questionnaire

on the scale. For the AI-generated song, energy got the highest score with an average
of 3.8 points on the scale. This was followed by danceability with 3.4 points and cohe-
siveness with 3.22. Emotion was rated the worst with a mean of 2.62 points. Overall,
Song 1 collected 1228 points in all criteria by all participants or an average value of
3.08 points on the scale.
Song 2 - Human production: The second song was produced by humans. The ar-
rangement scored best with an average of 3.8 points on the scale. This was followed
by cohesiveness with 3.76 points and danceability with 3.65 points. Emotion was again
rated the worst with a mean of 3.14 points. Overall, the song was rated with 1365 points
and achieved an average value of 3.49 points on the scale.
Song 3 - AI assistance: The third song was produced in collaboration between a human
and an AI. Creativity received the highest score here, with an average of 3.82 points on
the scale. This is followed by energy with 3.66 points and recognition with 3.5 points.
Emotion was again rated the lowest with a mean score of 2.98 points. Overall, the song
was rated with 1368 points and achieved an average value of 3.42 points on the scale.
In comparison, the human-produced song, and the AI-human collaboration both scored
about the same. The AI-generated song scored 1228 points, about 10% worse than
the other songs. Creativity is rated the highest for the AI-assisted production, and the
recognition value is also almost 30% higher. The human production was considered
less creative, but the arrangement was easy for the listener to understand, and the song
seemed cohesive. In the AI production, the rhythmic criteria such as danceability and
energy stood out.

6 Summary and Conclusion

The experiment was designed to test whether the use of AI in digital music production
can increase the time efficiency. In the experiment, three songs were produced with the
same prerequisites, but each in a different production mode. Since AI can be used to
different degrees in music production, three levels were developed: AI inspiration, AI
assistance, and AI automation. As a result, it was expected that the producer will have
significant savings in time and effort by using AI. However, some of the results differed
from the assumptions. A digital music production was divided into four phases. The ex-
periment showed that the use of AI in production increased efficiency especially in the
composition phase and the second editing phase. There were no significant differences
in the overall production ratio in the preparation phase, but this phase was slightly faster
with human production. Overall, the AI automation was convincing with an efficiency
increase of 41% on average. AI assistance decreased production efficiency by about
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20% on average.
The created songs from the experiment were listened to, rated, and evaluated by 50
people. The result of the survey was that the computer-generated song was rated about
10% less, than the other two songs. It is concluded that although an AI can write songs
and melodies on its own, they are perceived not as melodic and creative as productions
that involved a human. Since AI assistance was rated 30% better in terms of melodic
criteria, it can be stated that the introduction of AI into the production process can ex-
ceed these very limits.
Thus, for the further development of AI-assisted programs for music production, it is
important to develop AIs that see a song as a whole and when the “memory” (e.g., in
LSTM) is large enough to remember a theme or idea in a song and repeat it at the right
places. For EDM producers, it should be noted that the introduction of AI as a tool into
the right phase of the production process has many positive aspects such as saving time
and effort and supporting the creative process of composing melodies.
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Abstract. Timbral autoencoders, a class of generative model that learn the tim-
bre distribution of audio data, are a current research focus in music technology;
however, despite recent improvements, they have rarely been used in music com-
position or musical systems due to issues of static musical output, general lack
of real-time synthesis and the unwieldiness of synthesis parameters. This project
proposes a solution to these issues by combining timbral autoencoder models
with a classic computer music synthesis technique in wavetable synthesis. A
proof-of-concept implementation in Python, with controllers in Max and Super-
Collider, demonstrates the timbral autoencoder’s capability as a wavetable gener-
ator. This concept is generally architecture agnostic, showing that most existing
timbral autoencoders could be adapted for use in real-time music creation today,
regardless of their capabilities for real-time synthesis and time-varying timbre.

Keywords: Generative models, neural networks, sound synthesis

1 Introduction

A generative model can be broadly defined as a probabilistic method that learns a dis-
tribution based on a corpus of training data such that examples similar to the training
data can be generated by sampling from the learned distribution [1]. Recently, the term
has been largely associated with deep artificial neural networks that generate images,
video, speech, or examples from a variety of other domains. Music researchers have
utilized neural network generative models as a technology for sound synthesis in music
(for example, the groundbreaking NSynth neural synthesizer [2]). One such approach
is the timbral autoencoder (i.e. [3][4][5]). In this type of model, networks learn au-
dio representations in the frequency domain, resulting in models that synthesize sounds
based on a learned latent space of their training data, usually monophonic instruments.
These timbral models target the problem of novel sound generation, particularly in a
synthesizer setting [3]. Ideally, musicians can find sounds that interpolate the timbre
of multiple instruments, or sounds that do not invoke any recognizable instrument at
all. Recently, the variational autoencoder (VAE) [6] has been favored (an overview of
VAEs for musical audio can be found here [1]). Once trained, a user may provide latent
parameters to the VAE to generate new examples.

There are a number of benefits to training these models. The training data is rep-
resented in the frequency domain, which behaves better than time-domain represen-
tations with common loss functions that do not account for phase shift. Additionally,
� Special thanks to Karl Yerkes (MAT, University of California Santa Barbara) for his great help

with SuperCollider and OSC implementations.
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some models render audio in near real-time [3] due to a sufficiently small architecture,
as opposed to more complex audio models such as the NSynth autoencoder [2]. More
recent efforts have shown that the models can learn the timbre of the training data in
a way that sufficiently disentangles the pitch of the training examples, even when the
training data does not contain pitch labels [4].

While integration of these models in music systems seems imminent, there are some
practical drawbacks that remain unaddressed. Learning problems in the frequency do-
main largely concern magnitude spectra, meaning that phase reconstruction is neces-
sary before the audio can be rendered in the time domain. Models that learn on mag-
nitude Fourier transforms can use phase reconstruction algorithms that run in real-time
[3]; however, models that use alternate spectral representations [5] rely on non-real-
time algorithms such as the Griffin-Lim method [7]. Finally, recurrent connections are
largely absent in timbral autoencoder models, meaning models are limited to generating
a cyclic waveform per selection of latent parameters.

1.1 Motivation and Project Overview

This project aims to integrate a neural network synthesis engine implemented in Python
with more general synthesis and composition engines in Cycling ’74’s Max software
and SuperCollider (SC). While many of the aforementioned research efforts focus on
improved synthesis in the form of fidelity, realism, or expressiveness, this project takes
the philosophy that current synthesis methods are already usable in music creation when
combined with existing and well understood computer music methods.

Because most timbral autoencoders produce inherently cyclic audio, we can con-
ceptually treat them as oscillators. Many timbral autoencoders are not conditioned on
pitch, precluding them from being used as oscillators in a traditional sense. Addition-
ally, models that do not use real-time phase reconstruction cannot be used to synthesize
audio in real-time like a traditional oscillator. Therefore, incorporating these models
into real-time engines requires a method that utilizes pre-rendered cyclic audio signals.

The most straightforward candidate for such a synthesis system is wavetable syn-
thesis [8], a scheme in which cyclic waveforms are stored and synthesized by reading
and interpolating values at a given frequency. This project recasts timbral autoencoders
as wavetable generators and provides methods for sampling and saving wavetables from
their output. Proof-of-concept software is provided in Max and SC, demonstrating how
timbral autoencoders as wavetable generators can be used in performance and compo-
sition, and can be sonically extended using methods such as wavetable interpolation
and frequency-modulated playback. We refer to the process of incorporating timbral
autoencoders, often VAEs, into a wavetable extraction framework and combining them
with music synthesis software as WaVAEtable synthesis.

1.2 Related Methods

NSynth [2] is an early musically focused generative model for audio. NSynth’s unique
architecture allows it to iteratively create time-domain audio, resulting in audio with
time-varying timbre. This result is arguably more musically useful than cyclic wave-
forms, but the model is expensive to train on most computers and slow to render audio.
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Fig. 1. Architecture of the basic VAE trained for this project. The dotted blue rectangle on the left
contains the encoder and solid-lined red rectangle on the right contains the decoder. The dotted
line between encoder and decoder represents a sampling operation. The input and output data are
magnitude spectra extracted from the STFT of instrumental audio.

Neural Wavetable [9] is perhaps the most similar project to the one presented here.
The project uses an autoencoder to learn time-domain wavetables and interpolate be-
tween them. Interpolation is performed on the latent encoding of two target wavetables.
This is conceptually similar to timbral autoencoders, with the exceptions that Neural
Wavetable operates in the time-domain as opposed to the frequency-domain, and that
the model is explicitly trained on wavetables. Because the method proposed here ex-
tracts wavetables from a broad collection of generative models, it is a more general
method than the Neural Wavetable method. Neural Wavetable’s underlying model can-
not generate audio in real-time, so the associated plug-in uses pre-rendered wavetables
for interpolation.

A more thorough survey of generative models for audio can be found here [1].

2 WaVAEtable Synthesis

2.1 Sample neural network architecture and training

This software exploits the architecture of timbral autoencoders, wherein user-provided
encodings produce spectral audio that is converted to time-domain audio. To keep the
design aimed towards utilizing existing models, this software uses a simple VAE (de-
picted in Figure 1) implemented in PyTorch [10] that encapsulates the most basic gen-
erative capabilities shared by timbral autoencoder models. The data are positive fre-
quency bins from Short-time Fourier Transform (STFT) frames of audio in the NSynth
dataset [2]. The architecture model is shown in Figure 1. After training, the 16 latent pa-
rameters are used to synthesize the magnitudes of the positive frequencies of an STFT
frame. These frames are reflected and time-domain audio is added using the Griffin-
Lim algorithm [7]. The decoder-to-audio process is detailed in Figure 2. Adjusting the
architecture and hyperparameters of this model could constitute a separate research ef-
fort, but are not critical to this project as this method aims to be as architecture- and
model-agnostic as possible.
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Fig. 2. Decoder to audio process: latent space parameters (z) are provided to the decoder, depicted
as a red triangle. Output from the fixed z is used to create a magnitude STFT. The Griffin-Lim
algorithm for phase reconstruction then yields in time-domain audio.

2.2 Wavetable generation

Many synthesis engines use a default wavetable size of 512 samples. If a given tim-
bral autoencoder is conditioned on pitch, the model could generate output at a specific
fundamental frequency f0 such that the period of the waveform is 512 samples given
the sampling rate fs by setting f0 = fs

512 . However, this setup is not always feasible.
Many timbral autoencoder models, including the model used here, are not conditioned
on pitch, resulting in a generative latent space that changes both timbre and fundamental
frequency simultaneously. Even those models that disentangle pitch from timbre may
be conditioned on discrete pitches (such as MIDI notes), and in general may not be able
to generate the desired f0. For example, the sampling rate of the NSynth data set is 16
kHz, so a waveform with period 512 samples has f0 = 31.25 Hz, well below reasonable
pitches in most music data sets.

Therefore, wavetables are created using a heuristic wavetable extraction algorithm
that relies on f0 estimation and resampling. Given a latent encoding from a user, the
decoder is invoked to create a periodic waveform (see Figure 2). We use the pYin [11]
algorithm to estimate the fundamental frequency of each frame. The pYin algorithm is
probabilistic and determines the likelihood of each frame containing a pitched sound.
If a sufficient number of frames are found likely to be pitched, we predict the f0 of the
waveform to be the mean of the f0 of the voiced frames; if this is not the case, it is likely
that the provided encoding is very dissimilar from examples learned in the training data
and the resulting sound may be noisy and therefore unpitched.

Given the fs of a model and the predicted f0 of the model’s output based on the
user’s inputs, we resample the output to a new sampling frequency round(f0 ∗ 512),
which results in a waveform whose period is very close to 512 samples. Finally, samples
are extracted from the new waveform starting from some position that is very near 0 to
avoid an impulse at the beginning of the wavetable. Overall, the extraction method is
subject to failures in f0 estimation (usually octave errors) and resampling artifacts, but is
architecture agnostic and can be adapted to any timbral autoencoder (or any generative
model whose output is sufficiently periodic).

2.3 Synthesizer implementations

Two prototype synthesizers were created as a proof-of-concept to demonstrate multiple
musical uses for VAE wavetables. First, a simple polyphonic synth patch was created
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in Cycling ’74’s Max software. This patch assigns incoming MIDI notes to one of five
voices. Here, random wavetables are pre-rendered using a Python script and can be
regenerated by the user. Communication is done via the file system with wavetables
saved and loaded from .WAV files. This patch also combines wavetable synthesis with
FM synthesis, with MIDI CC controls controlling the wavetable assignment and FM
controls of the wavetable playback speed. This patch, while simple, demonstrates the
viability of using timbral autoencoder output in real-time performance.

A more complex system was constructed in SC with the goals of user interactivity
with the underlying model, more complex synthesis methods and algorithmic compo-
sition. Users control the latent parameters of the VAE described in Section 2.1 using a
custom GUI created in SC. The user can listen to a wavetable for a given setting, and
if it is interesting for their compositional purposes, save it. All communication between
Python and SC is performed locally using OSC, so no file system interaction is required.
Figure 3 shows the interface for manipulating and storing wavetables.

Once stored, wavetables are played back using wavetable synthesis and wavetable
interpolation. Users can also incorporate other SC generators to create complex synthe-
sizer definitions (SynthDefs) with the generated wavetables at their core. We provide an
example SynthDef that can be controlled by a MIDI controller, or used in algorithmic
composition. A small etude is included in the provided software to demonstrate this
capability. All Max, SC, and Python code, as well as the accompanying VAE model,
are available at https://github.com/jhyrkas/wavaetable.

2.4 Incorporation of existing timbral autoencoders

The neural network used in this project is not intended to be a standalone model, but
acts as a basic stand-in for existing timbral autoencoder models (i.e. [3][4][5]), most of
which have more complex architectures and are capable of more pleasing musical audio.
To test the viability of the WaVAEtable synthesis approach, the Python script to inter-
face with SC was adapted and added to a fork of the CANNe [3] synthesizer GitHub,
available at https://github.com/jhyrkas/canne_synth. The only major
changes to the script involved reinterpreting the latent space parameters sent from SC,
as CANNe’s latent space only contains 8 variables and expects a different range of
values. With just these minor adjustments, the CANNe model can now be used as a
wavetable generator in WaVAEtable synthesis. We posit that other timbral autoencoders
can also be easily adapted, so long as they offer an encoding-to-audio synthesis method.

3 Future Work and Conclusion

This work offers a path towards incorporating an existing body of generative models
into music systems. The proposed method allows for integrating models regardless of
underlying architecture and real-time viability, and allows for a greater reuse of interest-
ing latent parameters, which can be cumbersome to discover. Synth design and model
improvement can thus be treated as complementary and orthogonal research avenues.

WaVAEtable synthesis may approach the practical limits of incorporating static gen-
erative models for audio in more traditional electronic music synthesis. Future timbral
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Fig. 3. Left: Max interface to playback wavetables, controlled via MIDI controller. Right: Super-
Collider interface to control decoder parameters, listen to and store wavetables for playback.

models that generate audio in real-time and are conditioned on pitch could function as
a true oscillator in a synthesis system. Moving beyond these static timbral models to
time-varying models allows for new combinations of generative models and synthesis
methods, such as neural sample-generation and neural granular synthesis.
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Abstract. This article discusses different approaches of music composition 
and performance with electroacoustic, audiovisual and telematics media. It pro-
vides different points of view for understanding the so-called electroacoustic par-
adigm which emerges from the use of apparatuses in the sound creation and pro-
duction. From within electroacoustic music paradigm, we examine tendencies 
and visions of audiovisual and telematic music composition and performance. As 
illustrations we examine the pieces Vega_S (2019) by Kefalidis and Mojave 
(2021) by Chagas/Carrascoza. The telematic communication has the potential do 
convert discursive thinking into dialog and opens up new possibilities of artistic 
collaboration. The holistic potentiality of telematic art supports Ascott’s meta-
phor of love in the telematic embrace. 

Keywords: electroacoustic music, audiovisual music, telematic music, com-
position, performance, artistic collaboration, Flusser, Ascott. 

1 Electroacoustic Music 

What is electroacoustic? And what is electroacoustic music? From an evolutionary per-
spective, electroacoustic music represents a new paradigm in the history of music that 
carries on the tradition of vocal and instrumental music and extends it to include the 
use of apparatuses to produce and move sound around in spaces. From this historical 
point of view, it has emerged in a period of crisis represented by the disruption of the 
fundamental role tonal harmony has played as the established disciplinary matrix of 
music composition. This crisis triggered different responses leading to non-tonal tex-
tures in the music of composers such as Schoenberg, Webern, Stravinsky, Debussy, 
Bartok, Messiaen, and others. Moreover, it pushed composers to explore other con-
structive principles of musical organization focused on the physical reality of sound 
phenomena, and to emphasize sound qualities such as timbre and noise. Within the 
crisis of tonality as foundation, electroacoustic music was able to meet the demands of 
an aesthetic sensibility focused on this expanded consciousness of sound phenomena. 
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We find three different orientations in the development of electroacoustic music: mu-
sique concrète, elektronische Musik, and computer music.1 

The musique concrète that came into existence in Paris after World War II, began 
with Pierre Schaeffer’s experiments in recording techniques for capturing sounds of the 
acoustic environment. This approach engaged the persistent myth that the world is the 
primary acoustic space of music extending from the earth to the whole universe. The 
acoustic myth allows sound phenomenon to be isolated from the physical environment, 
be heard as a unique object and event, and eventually be disconnected from its material 
source and origin. Released from its cultural references, sound becomes a self-referen-
tial paradigm for composing new audible forms. At this point, composition took ad-
vantage of new technology for recording, manipulating, and reproducing sound. Draw-
ing ideas from Edmund Husserl’s phenomenology of time consciousness [2], the aes-
thetics of musique concrète developed notions such as sound object and reduced listen-
ing. These categories emerged through the interaction of sound material with technical 
apparatuses, most notably, the tape recorder. musique concrète provided electroacous-
tic composition with analytical and synthetic approaches to sound perception and com-
position. 

The elektronische Musik, most closely associated with the electronic music studio of 
Cologne, pioneered the creation of sounds whose models are neither found in nature 
nor possess the qualities of instrumental or vocal sounds. Methods adopted by 
Karlheinz Stockhausen and other composers of elektronische Musik were used to invent 
new sounds building from the simple elements of technical apparatuses. The signal 
generator and the noise generator became the prototypes of electronic sound devices 
despite being designed to test equipment and not for making music. These apparatuses 
are both mathematical constructs; the signal generator explores the simplicity of a sin-
gle harmonic motion such as the sine wave, while the noise generator explores the sta-
tistical model of all possible vibrations occurring randomly in auditive space. The aes-
thetics of elektronische Musik took advantage of electroacoustic technologies devel-
oped during the German Third Reich, which radically transformed the experience of 
listening while creating new logics to frame political activity. Radio broadcasting and 
sound amplification were interconnected technologies used for acoustic landscape con-
trol and organic synchronization of masses. Radio in particular activated the sonic ex-
perience of private intimacy and transformed the universe of telematic paradigm. How-
ever, radio also preserves the ancient magic of mythical worlds. As McLuhan [3, 299] 
notes, “The subliminal depths of radio are charged with the resonating echoes of tribal 
horns and antique drums.” 

The historical opposition between musique concrète and elektronische Musik is em-
blematic of the diversity of the electroacoustic paradigm. After World War II, the ac-
tivity of cultural institutions such as the radio studios of Paris and Cologne, promoted 
a shift of consciousness in electroacoustic music composition. musique concrète devel-
oped a poetics of detachment from the previous vocal and instrumental paradigms and 
attachment to the sound phenomenon; it disengaged sound consciousness from the 
models of traditional vocal and instrumental music while at the same time, moved 

 
1 For an account of the development of electroacoustic music see [1, 103-158]. 
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toward interactions with sound that revealed cultural values and identities. Meanwhile, 
elektronische Musik developed a poetics of detachment from the sound and attachment 
to the paradigm of music composition. By carrying on the compositional path of the 
previous vocal and instrumental paradigms, it disentangled consciousness from the rep-
resentative background of sound as a meaningful artifact and focused on the musical 
relevance of sound phenomenon. Elektronische Musik explores differentiations of 
acoustical agency in the vibration-centered model of sensitivity. 

The heterogeneity of sound material is an aesthetic foundation of electroacoustic 
composition. The opposition between recorded sounds (musique concrete) and syn-
thetic sounds (elektronische Musik), quickly dissipated as any kind of sound could be-
come the object of musical composition. The electroacoustic paradigm not only inte-
grated the musical puzzles of the previous vocal and instrumental paradigms but pro-
vided new ways for representing and manipulating sound. As the prototype of a repro-
duction apparatus, the tape machine was able to radically transform and manipulate 
recorded sound despite the fact that electromagnetic tape symbolizes linear thinking. 
On the other hand, digital systems of audio recording introduced non-linear represen-
tation in which sound is broken down into an atomic dot-like structures that disintegrate 
into a mosaic of numbers as the bond with temporal sound tissue dissolves. The frag-
mented granular structure of the sound, which can be manipulated by computers and 
artificial intelligences, replaces linear thinking and promotes a consciousness of the 
microstructure of any given sound. 

As Pousseur observed, electroacoustic music articulates a continuous interaction be-
tween different levels of sound organization, so that it becomes difficult “to draw a 
precise boundary between internal composition of sound and higher levels of composi-
tion” [4, 82]. A myriad of sound poetics emerged within the electroacoustic paradigm 
such as soundscape composition, deep listening, live-electronics, and other musical dis-
tinctions involving vocal, instrumental, or electronic sounds. The electroacoustic para-
digm extended sound perception and consciousness, especially in the way it relates to 
microscopic and macroscopic levels of sonic composition. The opposition of macro/mi-
cro sound, along with the methodic use of music apparatuses, is a signature of the elec-
troacoustic paradigm symbolizing a desire for intensification of the living experience. 

2 Sound Embodiment and Sound Space 

Human embodiment can be seen as a mediator between technology and the world. In 
traditional acoustic music, gestures are made distinctive through specific features such 
as articulations, dynamics, timing, rhythm, meter, texture, and timbre. In electroacous-
tic music, the body’s gestural interface – visual, acoustic, and tactile – facilitates new 
kinds of interactive and intersubjective communication. For both acoustic and electro-
acoustic music, gesture articulates not only the perception of nuance, cognition, and 
affect — but also negotiates the understanding of higher sound and musical structuring 
through internal synthesis and integration of elements. 

Embodiment and gestural activity emerge as key concepts in discussions of space in 
electroacoustic music [5]. The increasing focus on the multiple connections between 
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sound, body, and listening reaffirms the notion of space as enacted experience. This 
represents a significant shift from the typological and morphological approaches of 
sound to new formulations based on more synthetic, phenomenological, and ecological 
categories. Nevertheless, a problem persists in the theoretical and analytical discussion, 
namely the distinction between “internal” and “external” sound space. The structural 
coupling of internal and external references, as pointed out by Luhmann [6] in the realm 
of his autopoietic theory of social systems, poses the question: How do artistic objects 
articulate and combine perception and communication? 

In Luhmann’s response, sound space must be defined not in terms of sonic qualities, 
but as a mode of operation of consciousness that gives form to the perception of space 
within the acoustic environment. Similar to the operation that produces polyphony, 
sound space is the form of the difference between self-reference (internal world) and 
hetero-reference (external world) in acoustic perception. This definition implies that 
consciousness has to establish the boundaries that connect and disconnect the percep-
tion of sound phenomena to the perception of space. The definition of sound space is a 
particular embodiment based on the possibility of perceiving sounds as meaningful el-
ements. 

In opposition to instrumental and vocal sounds that are tightly coupled with the body 
and the objects that produced them, electroacoustic sounds can be seen as loosely cou-
pled because they leave room for multiple combinations. The sound recording of a 
voice, instrument, or environment is an inscription and re-creation of sound waves that 
can be transformed in different ways and turned into something completely altered from 
the original sound. Luhmann introduced the opposition between loose coupling and 
tight coupling to account for the difference between media and form. Media is a loose 
coupling of elements, something more abstract and fluid — while form is a tight cou-
pling of elements, something more stable and tangible. [6, 102-132]. Electroacoustic 
music is a disembodied entity as sound frees itself from the body. Therefore, electroa-
coustic composition requires a process of re-actualization of meaning in order to endow 
sounds with a bodily, spatial memory. 

From the beginning, space has been a functional and operational category of elec-
troacoustic composition. Sound space composition then became more fully realized 
with the introduction of multi-channel audio technology. Prototypes of multi-channel 
technology consist of the four-track tape recorder and the quadraphonic speaker system 
surrounding the listener: a stereo pair in the front and another in the back. Through the 
use of this technology in the late 1950s and 1960s, composers began to create pieces in 
which sounds were designed for specific positions in space. Once space became a pa-
rameter of composition, sound developed a “tactile” dimension.  Similar to a body, it 
occupies a unique position in the space from which it can exclude other spaces. 

3 Audiovisual Composition 

Currently, the concept of audiovisual art is framed by the dominant role film and tele-
vision play in our society, founded on technology of sound and image reproduction 
invented in the second half of the 19th Century. Cinematography, as an audiovisual art 
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that emerged from the movement of technical images, elevated film to the most popular 
artistic form in human history. With the supremacy of the moving image, especially 
during the silent film era, it was possible to cross borders and establish patterns of 
transnational communication. As the sound film quickly prevailed as a product of mass 
consummation, cinema, and later television, shaped the perception of sound and image 
until the end of the 1980s when digital technology set the stage for radical transfor-
mation. The popularization of personal computers, mobile devices, and networks of 
information and communication, began to reframe the creativity of audiovisual art. 
Technology propelled convergences of sound, image, space, and performance to create 
new architectures of collaboration giving rise to new kinds of transnational dialogues. 
As the traditional structures of creation and production of audiovisual art underwent 
this enormous change, new artistic forms of audiovisual composition began to emerge. 

In the universe of electronic music, there has been a growing interest in audiovisual 
composition with more electroacoustic works being coupled with video, and mixed 
works combining electroacoustic sounds, live performance, and visual projection. Au-
diovisual composition has the potential to bring electroacoustic music to a broader au-
dience, as it addresses a multimodal perception and sensibility. It reveals two important 
components: the convergence of fields and perceptions as well as the creation of a di-
versity and differentiation of forms. Composers of audiovisual works have much to 
consider. Based on their initial motivation to create a new piece, they are faced with the 
question of which will be more important – the music, the visuals, or the combination 
of the two? They must consider how the sound and image relate to each other as they 
attempt to intensify the immersive, sensorial experience and try to raise the conscious-
ness of the interconnection between hearing and listening as a mode of being in the 
world. If they fail to achieve these objectives, should the audiovisual composition be 
considered just another distraction reinforcing the patterns of entertainment and diver-
sion? As a society inhabited with myriad trivial objects and gadgets of audiovisual tech-
nology taking a hold on our existence, we have become saturated by the torrent of au-
diovisual impressions. Faced with this flood of information that can lead to a state of 
entropy, it is important to develop a critical reflection on audiovisual communication. 
We need a comprehensive account of the relation between sound and image beyond the 
conventional form of cinema in order to understand its full creative potential. It is nec-
essary to deconstruct the hegemonic discourses and point out the broad spectrum of 
possibilities and diversity of forms within audiovisual composition. 

4 The Electronic Music Video 

The music video, which emerged in tradition of electronic music, is a contemporary 
form of audiovisual composition coupling electronic sounds with image projection that 
enjoys growing interest and is developing into a sub-genre of electroacoustic music. 
The music can be “heard” and “seen” at the same time. The audiovisual merge seems 
to have the potential to make the music more accessible to a broader audience. But here 
one has to raise the following question: Does the multimedia intensify the sensorial 
experience and make it thus more attractive, or does it simply provide a distraction that 
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reinforces the patterns of entertainment and diversion of the consume society? What-
ever the answer may be, embedding the music into an audiovisual form provides the 
listener with an immersive experience that is functionally linked to the situation of the 
movie theater: the music is projected into the room through loudspeakers, the sound 
surrounds the bodies, while the image projected onto a screen—usually located in front 
of the audience—focuses the audience’s attention on an illuminated surface. 

The electroacoustic music video relating sound, image, and space is primarily an 
immersive experience that can be also integrated with other forms, such as the concert 
with live music performance (vocal, instrumental, and/or electroacoustic music); the 
performance with dance, acting, etc.; the installation; and so on. Traditionally, the au-
diovisual art is structurally coupled with the space both as physical and social medium. 
The immersive experience relates physical presence to social presence. By contrast, 
watching an electroacoustic music video on a computer, on internet, or on a mobile 
device is mainly an individual experience, in which the embodied experience is dis-
persed along a spectrum of possibilities emerging from the interaction with the techno-
logical environment. 

As an illustration of audiovisual composition, we would like to examine the piece 
Vega_S (2019) 2  by the distinguished Russian composer Igor Kefalidis (b. 1941). 
Kefalidis’ profound interest in electroacoustic music has resulted in a long period of 
composing pieces exclusively with electroacoustic sounds — most in combination with 
solo instruments, chamber music, and orchestra. His creativity reaches into the fields 
of dance and audiovisual composition and the relationship between sound and image 
plays a crucial role in his recent work, in which he has been collaborating with visual 
artists. Most recently, he has been adopting new tools to create synthetical images. 

Vega_S (2019) – length 13’05” – for electronic sounds and video is a remarkable 
piece that represents a mature stage of Kefalidis’ audiovisual composition style. Here, 
the electroacoustic music seems to bring forth the imagery, as though the sounds are 
endowed with visual symbolism. The visual composition by Andrew Quinn takes ad-
vantage of the imaginative character of the music and seeks to create an organic rela-
tionship through the use of a thin white vertical line in the middle of the screen that 
varies in brightness according to the music. The line turns into a narrow dark space 
separating two walls that constitute the main element of the visual composition. The 
walls are curved with a translucent and pixelated structure in black and white that con-
tinuously rotate in opposite directions, changing speed according to the sonic variations 
of the music. Figures appear and disappear in the narrow space between the walls and 
the spaces and on their left and right sides and the pulsing activity of these intermittent 
elements are in sync with the music. At 5’20”, a strong beat punctuates the visual com-
position and the music speeds up and ascends in a pseudo–quotation of a short compel-
ling rock guitar solo (8’35” – 8’48”). As the musical energy increases, colorful strips 
are introduced in the wall landscape, rotating ever faster and disrupting the visual sym-
metry to create a fragmented, fast-moving kaleidoscopic image to accompany the rock 
guitar. The electronic music creates the impression of fluid space as the sound objects 
and events seem to move closer and then farther away. The visual composition explores 

 
2 Available at <https://youtu.be/QLGKroHIpaA> (accessed June 1, 2021). 
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the fluidity of the space by creating a kind of futuristic landscape that constantly moves 
without a clear direction. The audiovisual composition presents us with the ambiguity 
of experiencing a calculated universe while simultaneously allowing us the chance to 
move between the world of algorithms. Overall, it infuses us with energy and hope as 
it suggests the need to disrupt hegemonic structures of power to escape via beams of 
flight leading to unknown territories. Vega_S is an accomplished example of the syn-
ergy of sound and image. The multiplicity of connections between electroacoustic 
sounds and synthetic images portray the massive potential of audiovisual composition. 

5 From Soundscape to Telematic Immersion 

Telematic music is an attempt to make a synthesis of two different types of communi-
cation: (1) The communication of chamber music, which occurs in the physical medium 
with bodies producing gestures that are translated into sounds; (2) the communication 
of electronic music, which occurs in the virtual medium with apparatuses producing 
programs that are translated into sounds or images. Unlike traditional chamber music, 
which is structured as a succession of linear events such as themes and variations, 
telematic music creates a dialog that “occurs in simultaneous time and space, and all 
players in all places make decisions relating to themes and their variations all at once” 
[7]. Telematic music offers the possibility to reshape musical performance in virtual 
spaces by reconstructing the subjectivity with the experience of presence. 

As an illustration of telematic music, we will discuss Mojave (2021)3 – length 8:53” 
– a collaborative work for flute, electronics and video that unfolds an aesthetics of au-
diovisual immersion with telematic performance. The work was developed on the basis 
of 3D video and ambisonics audio recordings on the desert of Mojave (California) in 
January 2019. Cassia Carrascoza created a performance for this specific site physically 
interacting with the landscape and improvising with sounds exploring extended tech-
niques for flute and bass flute. Paulo C. Chagas composed a score for flute and live 
electronics exploring algorithms of delay and feedback, which create a universe oscil-
lating between latencies and synchronies. Different versions of the piece were created 
for audiovisual media and live telematic performance. Mojave is a multilayered audio-
visual composition that reflects on the presence and absence as vectorial forces of cre-
ativity. The contrast between the vast desert landscape and the confined telematic en-
vironment evokes the existential feelings of eternal and transitory, the finite and the 
infinite, and the anxiety we current experience between isolation and the opportunity 
to immerse ourselves into virtual worlds. 

Conceptually, Mojave is part of the large-scale research project Sound Imaginations, 
which aims to investigate listening cultures and different categories of listening.4 The 
emblematic notion of soundscape proposed by the Canadian composer and scholar 
Murray Schafer in the 1970s [8] is a key concept for observing the sonic environment, 
which includes not only the “natural” sounds but also the entire culture that 

 
3 Available at <https://youtu.be/GB-KwDOImho> (accessed June 01, 2021). 
4 Sound Imaginations (2020) immersive surround sound and 3D video installation available at 

<https://ucrarts.ucr.edu/Exhibition/sound-imaginations> (accessed June 01, 2021). 
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characterizes the sonic environment of any specific space or object of study. Driven by 
Schafer’s ideas, many scholars and artists have been pursuing the mapping of historical 
and contemporary soundscapes and observing the transformation of soundscapes in the 
industrial and digital societies. Many authors have criticized Schafer for having pro-
jected the problematic concept of “soundscape” borrowed from visual art into sound 
studies as it suggests a static perspective rather than the moving and surrounding char-
acteristic of sound phenomena. Also, it implies a division between hearing and seeing, 
which is highly problematic in the contemporary world shaped by the connective reality 
of audiovisual and multimedia technology. 

Feld [9], for instance, proposes the concept of acoustemology – the union of acous-
tics and epistemology – that investigates the primacy of sound as a modality of knowing 
and being in the world. Soundscapes are not just physical exteriors, they are perceived 
and interpreted by human actors and are invested with significance by those whose 
bodies and lives resonate with them in social time and space. As a cultural system, 
sound both emanate from and penetrates bodies; hearing and producing sound are thus 
embodied with competencies that situate actors and their agency in particular historical 
worlds. 

The compositional concept of Mojave was elaborated on the basis of the semiotic 
square proposed by Hayles [10] that reconstructs the distinction between randomness 
and pattern in the so-called posthuman society while emphasizing the role of embodi-
ment and materiality in the processes of constituting meaning. Hayles’ semiotic square 
(Figure 1) has two axes: the main axis is the distinction between presence and absence; 
the secondary axis is the distinction between randomness and pattern. Two diagonals 
that connect these two axes trigger a dynamics of signification. The diagonal connect-
ing presence and pattern conveys replication; the diagonal connecting absence and ran-
domness signals disruption. The interplay between presence and absence shapes mate-
riality; the interplay between randomness and pattern gives rise to information [10, 247-
251]. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Hayles’ semiotic square of the posthuman society [10, 249]. 

On the site of the desert of Mojave, Cássia Carrascoza developed a performance with 
flute and bass flute that articulates a dialectics of presence/absence emerging from the 
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auditory and visual perception of the soundscape/landscape. For instance, the presence 
the strong wind blowing through the vast space of the desert – which also autonomously 
activated flute sounds –, and the sounds produced by the crackling of small stones as 
one moves across the uneven desert ground, these are two elements that were integrated 
in the performance, along with long sounds and extended flute techniques. The 3D im-
ages move around Cássia as focal point, a central figure that captures the human pres-
ence in the emptiness of the desert landscape, which symbolizes void and absence. 
Starting from this focal point, the movements unfold edges, diagonals, curves, rotations, 
and circular movements that opens up a constant play of spiracle shapes, a vortex of 3D 
images that pushes things beyond the center, creating a path of decentering moving 
along both the axis of presence/absence and randomness/pattern. The musical compo-
sition associates visual imagery with the spherical sound perception of the ambisonics 
technology. It explores a vocabulary of sound shapes and colors, sound objects, events 
or movements that tease out the decentering of the listener, which is sometimes syn-
chronized and sometimes out of sync with the visual. 

Mojave is a collaborative work between a composer and a performer acting as equal 
partners that takes into account the new fields of creativity emerging through the con-
vergence of sound, image, and the development of new architectures of collaboration. 
It addresses resources, approaches, and strategies of audiovisual composition in an en-
vironment where information is embodied in complex heterogenic and polyphonic 
structures of subjectivity. The piece exists in different versions including a real-time 
telematic performance.5 As pointed out by Guattari [11] [12], subjectivity is no longer 
restricted to human consciousness, but incorporates the body of technology through 
what he defines as “machinic assemblages”. Creativity no longer depends on personal 
identity and subjectivity but on the particular assemblage that happens in connection 
with technological bodies that extend the framework of cognition and meaning. The 
structure of the “machinic assemblages” can be defined as “polyphonic, as it articulates 
a multiplicity of human and non-human subjects bringing several simultaneous and in-
dependent levels of perception and meaning” [1, 106]. 

6 Conclusion: Telematic Embrace 

As Heidegger [13] argues, modern technology has changed our sense of the world as it 
tends to reduce everything into mere resources, including human beings. The program-
matic magic of technical apparatuses, including artistic apparatuses that produce syn-
thetic sounds and images, tends to eliminate critical thinking, replacing historical con-
sciousness with a second-order magical consciousness that reduces culture to its lowest 
denominator. With the technical apparatus, relations of power move from physical ob-
jects to a symbolic level of programs and operators. 

The telematic paradigm embraces the communicative complexity that emerges from 
the convergence of telecommunications and information processing in today’s society. 
Flusser [7] believes that telematic communication has the potential to radically 

 
5 Available at <https://youtu.be/onuWdf92KrI> (accessed June 1, 2021). 
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transform the way we communicate. Telematics can reverse the natural tendency of 
entropy – the state of randomness in which information is unpredictable and therefore 
impossible – by converting historical and discursive thinking into dialog. In Flusser’s 
telematic dialog, man and apparatuses act as partners devoting themselves to the sys-
tematic generation of information through a playful game. The telematic dialog embod-
ies Flusser’s utopia of freedom as a struggle against entropy, which emancipates man 
from the controlling functionality of the machine. 

The possibilities of artistic collaborations between participants in remote locations, 
interacting via electronic networks, can facilitate interactive art and interdisciplinary, 
as Ascott pointed out in his seminal writing of 1960s [14, 109-156] The telematic par-
adigm involves not only the technology of interaction among human beings but be-
tween the human mind and artificial systems of intelligence and perception. It trans-
cends the body, amplifies the mind into unpredictable configurations of thought and 
creativity, and can contribute to the emergence of a global consciousness. The holistic 
potentiality of telematic art supports Ascott’s metaphor of love in the telematic em-
brace. Like gravity, passionate attraction draws together human beings an connects 
then. Global telematic embrace would constitute an “infrastructure for spiritual inter-
change that could lead to the harmonization and creative development of the whole 
planet” [14, 245]. 

References 

1. Chagas, P. C.: Unsayable Music: Six Essays on Musical Semiotics, Electroacoustic and Digital 
Music. Leuven University Press, Leuven (2014). 

2. Husserl, E.: Zur Phänomenologie des inneren Zeitbewußtseins. M. Nijhoff, The Hague (1966). 
3. McLuhan, M.: Understanding Media: The Extensions of Man. The MIT Press, Cambridge 

(1994). 
4. Pousseur, H.: Fragments théoriques I sur la musique expérimentale. Editions de l’Institut de 

Sociologie de l’Université Libre de Bruxelles, Brussels (1970).  
5. Smalley, D.: Space-form and the Acousmatic Image. Organized Sound 12(1), 35-58 (2007).  
6. Luhmann, N.: Art as Social Systems. Stanford University Press, Stanford (2000). 
7. Flusser, V.: Into the Universe of Technical Images. University of Minnesota Press, Minneap-

olis (2011). 
8. Schafer, M.: The Soundscape: Our Sonic Environment and the Tuning of the World. Destiny 

Books, Rochester (1994). 
9. Feld, S.: A Rainforest Acoustemology. In: The Auditory Culture Reader, pp. 223-279. Bull, 

M. and Back, L (eds.), Berg, Oxford; New York (2003). 
10. Hayles, K.: How We Became Posthuman: Virtual Bodies in Cybernetics, Literature, and In-

formatics. University of Chicago Press, Chicago (1999). 
11. Guattari, F.:  Chaosmosis. Galilée, Paris (1992). 
12. Guattari, F.: Machinic Heterogenesis. In: Rethinking Technologies, pp. 13-17. University of 

Minnesota Press, Minneapolis (1993). 
13. Heidegger, M.: The Origin of the Work of Art. In: Basic Writings, pp. 139-212. Harper Per-

ennial, New York (2008). 
14. Ascott, R.: Telematic Embrace: Visionary Theories of Art, Technology, and Consciousness. 

University of California Press: Berkeley (2003). 



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

279

CROCUS: Dataset of Musical Performance Critiques 
Relationship between Critique Content and Its Utility 

Masaki Matsubara1*, Rina Kagawa1*, Takeshi Hirano2, and Isao Tsuji3 

1 University of Tsukuba 
2 University of Electro-Communications 

3 Senzoku Gakuen College of Music, Kunitachi College of Music 
masaki@slis.tsukuba.ac.jp 

Abstract. In musical performance education, verbal as well as non-verbal infor-
mation is used to convey knowledge. In the current social situation, the demand 
for remote and asynchronous lesson is increasing, and it is not clear what types 
of verbal information should be used. In this study, we collected 239 critique 
documents written in Japanese by 12 teachers for 90 performances of the same 
10 orchestra studies of the oboe by 9 students. We categorized the critiques and 
found that their content differed more by the teacher than by the piece or the 
student. We also found that the category of giving a practice strategy was partic-
ularly valued by students. 

Keywords: Database, Music Education, Verbal Information 

1 Introduction 

Playing musical instruments has traditionally been taught in-person and was considered 
unsuitable for virtual learning environments. However, the COVID-19 pandemic has 
led to increased demand for online music tuition [1, 17]. In musical performance tuition, 
knowledge is conveyed using both non-verbal information such as singing melodies 
and gesturing, and verbal information such as pointing out mistakes [7, 12, 22]. Verbal 
information is essential for conveying how the learner’s performance sounds, why they 
did not play well, and how they should practice. An advantage of online music tuition 
is that space and time do not necessarily have to be shared, thus allowing for remote 
and asynchronous teaching. However, due to the low resolution of online video/audio 
communication, there is a limitation in the use of non-verbal information, as it is diffi-
cult to convey complex body movements and high-quality sound performances. There-
fore, the importance of verbal information in music tuition, especially in the critique 
documents of asynchronous online performance education, is expected to increase [10]. 

However, teaching using words is not easy. In our preliminary survey of nine music 
college students and one hundred people with musical performance experience, they 
reported a good impression of their musical experience, although some were not satis-
fied with their teacher’s instructions. We collected free-text responses about 

* Two authors equally contributed to this research.
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Fig. 1. Overview of the construction of the musical performance critique dataset. 

dissatisfaction with the instruction and categorized the results as the pertaining to three 
issues: (1) content of performance instruction (e.g., “I would have preferred instruction 
based on facts,” “lack of concrete advice”), (2) consistency of instruction over multiple 
lessons (e.g., “completely different or inconsistent attention from lesson to lesson”), 
and (3) wording of instruction not related to performance (e.g., “all the teacher did was 
scold without much praise”). 

We believe that one reasons for these problems is the lack of teaching protocols in 
performance instruction and the lack of systematic clarification of what should be ver-
balized to benefit learners. At present, however, the empirical knowledge of what types 
of instruction are provided is not widely shared, even among students who aspire to 
become professionals. 

This paper introduces an open dataset of musical performance critiques in Japanese, 
called CROCUS (CRitique dOCUmentS of musical performance), to promote music 
education through the study of verbal information in performance instruction. We de-
fine critique documents as comments written by teachers to give feedback on a perfor-
mance. We collected 239 critique documents from 12 teachers for 90 performances of 
10 pieces by 9 students (Fig. 1). Because music college classes are conducted online at 
present, we collected recordings and critique documents similar in manner to those in 
asynchronous classes. This dataset allows us to compare critiques for each piece, stu-
dent, and teacher. We examined which critique contents were perceived by the per-
formers as useful instruction. Specifically, we analyzed types of verbal information, 
measured the perceived utility of critiques, and examined differences in utility scores 
among teachers, students, and pieces. 

The contributions of this paper are as follows: 

• We constructed an open dataset of 239 critique documents of 90 musical perfor-
mances of 10 oboe orchestral studies1. 

• We quantitatively demonstrated that the content of the critique documents varies 
more by teacher than by piece or student. 

• We collected evaluations of the critique documents from people with musical expe-
rience and examined the types of verbal information to determine what in the critique 
documents was described as having high utility. 

 
1 Dataset is public on https://doi.org/10.5281/zenodo.4748243 
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Table 1. List of Pieces 

ID Composer Piece 
p01 L. v. Beethoven Symphony No. 3 in E flat Major ‘Eroica’, Op. 55 
p02 G. A. Rossini ‘La Scala di seta’ Overture 
p03 F. Schubert Symphony No. 8 in B Minor D.759 ‘Unfinished’ 
p04 J. Brahms Violin Concerto in D Major, Op. 77 
p05 P. I. Tchaikovsky Symphony No. 4 in F minor, Op. 36 
p06 P. I. Tchaikovsky “Swan Lake”, Ballet Suite, Op.20a 
p07 N. Rimsky-Korsakov “Scheherazade”, Symphonic Suite, Op. 35 
p08 R. Strauss “Don Juan”, Symphonic Poem, Op. 20 
p09 M. Ravel Le Tombeau de Couperin I.Prelude 
p10 S. Prokofiev “Peter and the Wolf”, Symphonic Tale, Op. 67 

2 Related Work 

2.1 Music Database for Research 

Numerous music databases have been published, with, for example, performance re-
cordings data [14], metadata (genre, composer, lyrics, etc. [15, 28, 32]), musical scores 
(MIDI [20], piano notation [11]), information associated with scores (fingering [25], 
music analysis [16]), and other multimodal information [23]. There are also databases 
about the human aspects involved in music, including emotions [5], listening history 
[27], and performer interpretations [18, 19, 26], but, to the best of our knowledge, no 
database shares critiques in performance education. 

2.2 Teaching Behavior in Musical Performance Tuition 

Teaching behavior in musical performance tuition has been studied in the music edu-
cation field, including comparison of teacher levels [13], analysis on time allocation 
[4], comparison [33] and categorization [29, 30] of verbal and non-verbal information, 
and teacher–student interaction [9]. These studies targeted the transcription of speech 
in interactive instruction. Our study focused on critique documents that can be used for 
asynchronous education. 

Regarding the utility of instruction, one study compared verbal and non-verbal in-
struction [6], and another summarized the evaluation of its usefulness [8]. These studies 
were based on five or fewer performances. We conducted a large-scale study and clar-
ified the relationship between the verbal information and its utility. 

3 Method 

We constructed the CROCUS dataset by collecting performance recordings and cri-
tique documents. Then, all comments in the documents were annotated. Finally, the 
perceived utility of every document was evaluated. All collection procedures were ap-
proved by the ethical review boards of the University of Tsukuba, Senzoku Gakuen 
College of Music, and Kunitachi College of Music. 
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Table 2. Types of verbal information in this study 

 Type Definition 

Adopted and 
adapted from 
Carlin [3]; 
Zhukov [34]; 
Simones [30] 

Giving Subjective 
Information (GSI)2 

Providing general and/or specific conceptual in-
formation based on the teacher’s subjectivity. 

Giving Objective 
Information (GOI)2 

Providing general and/or specific conceptual in-
formation based on objectively referable events 
or concepts. 

Asking Question (AQ) Enquiring. 

Giving Feedback (GF) Evaluation of a student’s applied and/or concep-
tual knowledge. 

Giving Practice (GP) 
Strategy 

Providing suggestions for ways to practice a par-
ticular passage or discussing a practice schedule. 

Giving Advice (GA) 
Giving a specific opinion or recommendation to 
guide the student’s action toward the achieve-
ment of specific musical aims, without demon-
stration or modeling. 

3.1 Constructing the CROCUS Dataset 

A total of 90 performances (10 pieces by 9 music college students majoring in the oboe) 
were recorded. As online lessons have become the norm in the music colleges due to 
COVID-19, we adopted a comparable situation. Each student played in a less reverber-
ant and less noisy environment at home, about 1 m away from the recording device 
(Roland R-07). Tuning and recording level were adjusted at the beginning of the re-
cording. We selected the 10 pieces in Table 1 to balance difficulty, style, form, and era. 

3.2 Annotating Types of Commentary in CROCUS 

We adopted and adapted Simones’ definitions [30], as shown in the Table 23. One of 
these six types was annotated to each sentence. Sentence breaks were periods or excla-
mation marks. When a sentence was judged as consisting of multiple types, they were 
separated by a comma. Two annotators annotated all 239 documents. If the annotations 
did not match, the final annotation was decided through discussion. The Cohen’s kappa 
coefficient was 0.96. 

3.3 Evaluating Perceived Utility of Critique Documents 

The perceived utility of the collected critiques was examined by 200 people who an-
swered the question “Do you think that this document is useful for future performances?” 
by using an 11-point Lickert-like scale (10: useful – 0: useless). Participants responded 
to 25 randomly selected critique documents. This question is referred to as Q1. 

 
2 Originally “Giving Information.” Divided by the authors. 
3 Types of “Demonstrating”, “Modelling”, and “Listening/Observing” were omitted because 
these actions are not observed in a written text. 
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Fig. 2. Number of commentary types for each document per (a) teacher, (b) student, and (c) piece. 
The error bar indicates the standard deviation. 

Detailed Analysis of the Utility: Utility is not limited to usefulness for future per-
formances. Therefore, we referred to the usefulness perspective used in software re-
quirement specifications [21] and accounting documents [31] for eight other items. The 
questions we used were as follows. All questions were asked in the form of “Do you 
think that this document —?” Q2: is readable, Q3: is understandable, Q4: has language 
not related to future performances, Q5: is not ambiguous, Q6: contains only statements 
related to the future performances, Q7: is consistent, Q8: can be verified by listening to 
the performance, and Q9: allows you to refer to the relevant part in the score from the 
content described. 

4 Results 

4.1 Constructing the CROCUS dataset 

A total of 239 critique documents4 were provided by 12 teachers who are currently with 
or formerly belonged to well-known music colleges, orchestras, and brass bands in Ja-
pan. Each teacher wrote critique documents assuming the usual lessons for a total of 20 
performance recordings. The 20 performances were selected in a counterbalanced man-
ner with the following constraints: each piece was reviewed by at least two teachers, 
and every teacher reviewed at least one performance for every student. Due to the cur-
rent social situation, the critique documents were also written at the teacher’s home.  

 
4 One critique was lost during the collection process. 
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Fig. 3. Average score of Q1 for each critique document (sorted by Q1 score). 

 
Fig. 4. Average scores for Q1 by teacher, student, and piece (sorted by Q1 score). 

An example of a critique document is as follows: 
The difficult passages are performed well here. If I were to ask for more, the sound 
is almost “too” fulfilling — it feels like a pancake with slightly too much syrup on. 
That may not be the best comparison... 

4.2 Annotating Types of Commentary in CROCUS 

GSI, GOI, AQ, GF, GP, and GA appeared in 47.28%, 54.81%, 3.34%, 39.33%, 22.18%, 
and 93.72% of the documents, respectively. The average (and standard deviation) of 
the number for each category per document was, 0.70 (0.90), 0.85 (1.00), 0.03 (0.18), 
0.61 (0.88), 0.33 (0.70), and 3.33 (2.50), respectively. Fig. 2 shows that the differences 
in the content of documents were larger among teachers than among songs or students. 

4.3 Evaluating Perceived Utility of Critique Documents 

Our results showed that the critique documents had a variety of utility scores, and there 
were documents that the readers perceived as less useful (Fig. 3). Since the null hy-
pothesis that the distributions of Q1 values for each teacher, student, and piece (Fig. 4) 
were normal was rejected by the Shapiro–Wilk test, the Kruskal–Wallis test was used. 
The null hypothesis that the Q1 values that the reader perceived useful were equal 
among all teachers and the null hypothesis that they were equal among all pieces were 
rejected (p ≤ 0.001, the effect size was small). 
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Table 3. The p-value and effect size of the Kruskal–Wallis test conducted for each question item 
for each teacher, student, and piece. 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 
Teacher ***(s) ***(m) ***(s) ***(s) ***(m) ***(m) ***(s) ***(s) ***(m) 
Student **(vs) ***(vs) ***(vs) ***(vs) ***(vs) ***(vs) *(vs) ***(vs) ***(vs) 
Piece ***(vs) ***(vs) − (vs) − (vs) ***(vs) ***(vs) *(vs) ***(vs) ***(s) 

* p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001; m, s, and vs mean moderate, small, and very small, respectively. 

 
Fig. 5. Question scores for each document per teacher, student, and piece. 

Detailed Analysis of the Utility: Table 3 presents the results of the Kruskal–Wallis 
test performed for the average score of each question (Fig. 5). The difference between 
the teachers was more remarkable than that between the students or the pieces for all 
questions. This result was consistent with previous research showing that the usage of 
words differs depending on the teachers [22]. The differences among the teachers were 
particularly large regarding whether the commentary was easy to understand (Q3), not 
ambiguous (Q5), contained only descriptions related to future performances (Q6), and 
can refer to the relevant part in the score (Q9). Detailed statistical analysis of the utility 
score of critiques is described in [24]. 

The critique documents with the highest average Q1 and that with the lowest average 
value are shown as follows (types are annotated with square bracket): 
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Fig. 6. Histogram of types in best 10% and worst 10% of critique documents. 

The highest-rated critique (n09-p04-c03) (Q1: 8.41 ± 1.44) 
[GSI] I feel that this performance is very good, and it leaves a very favorable im-
pression. [GA] Because of this, I would like you to be a little more careful regarding 
the nuances of the performance. [GP] Please practice the grace notes in bars 2 and 
4 again by themselves. The same for bar 10. [GF] There is always a mistake in the 
E–H transition in bar 11. [AQ] Perhaps it is a problem with the tuning of the instru-
ment? [GP] Please perform this part slowly and check carefully. [GF] If it is not a 
tuning problem, then I believe it is a fingering or breathing problem. [GP] Please 
practice carefully and check if the breathing and fingering are both coordinated 
properly. [GA] In the second half, there is tenuto on the high E and D notes. [GA] 
Please endeavor to perform each note carefully with nuance. 

The lowest-rated critique (n04-p06-c05) (Q1: 4.63 ± 2.61) 
[GSI] The melodies are performed beautifully and vibrantly, almost as if I could 
hear an orchestra performing. [GSI] The phrasings are well expressed for the piece, 
and it was lovely. 

5 Discussion 

As Fig. 3, Fig. 4, and Table 3 indicate, the utility scores of critiques differed more 
greatly than by piece or each student. Teachers whose comments received high utility 
scores (e.g., c07, c01, and c03) provided information on the performance based on ob-
jective evidence (GOI), indicated the direction that the student should aim for (GA), 
and suggested practice strategies (GP). Fig. 6 is a histogram of types in the best 10% 
and worst 10% critique documents in terms of Q1 score. Giving practice strategies (GP) 
were observed in the best 10% and not in the worst 10%. Giving advice (GA), providing 
information based on objective facts (GOI), and giving feedback (GF) were also more 
common in highest-rated critiques.  

6 Conclusion 

We published the CROCUS dataset as a starting point for investigating the use of lan-
guage in critique documents. The dataset clarified that the contents of critiques varied 
most by teacher, and suggested that the category of giving a practice strategy was val-
ued by students.  
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Since the dataset was constructed at an early stage of the project, the instrument was 
limited to the oboe. Whether the findings are generalizable remains as an open question. 
We would like to explore more instruments and discuss whether a good critique docu-
ment structure has a common characteristic. The student participants were limited to 
music college students; thus, we would like to explore the topic at various levels of 
experience, such as professional and amateur students. Finally, the study was conducted 
using only Japanese. In the future, it will be necessary to conduct comparisons among 
multiple languages and discuss differences between languages and cultures [2]. 
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Abstract. This paper analyzes the complexity of guitar renditions for learners.
We have been developing a domain ontology called the Guitar Rendition On-
tology (GRO). GRO structurally describes the actual actions of a classical guitar
techniques for sharing information and learning the guitar. These descriptions can
be used to provide valid information on music for selecting music. Therefore, we
first improved GRO because the several renditions lacked of detailed descrip-
tions. Then, we investigated what types of renditions appear in five existing etude
books. After that, we analyzed indicators of the complexity of renditions using
the GRO’s classes and properties. Furthermore, we attempted to calculate the dif-
ficulty of each etude by implementing a novel analysis using TF-IDF and our
complexity indicators. Experimental results suggested that the difficulty value of
an etude corresponds to the creator’s subjectivity and intention.

Keywords: Complexity of Action, Music Selection, Guitar Rendition Ontology

1 Introduction and Background

In playing an instrument, the music selected is an important factor. If players can figure
out which techniques they are good or bad at and choose pieces appropriately, they can
improve their performance. However, it is not easy to take into account a lot of infor-
mation, such as the actual sounds and body movements, from information on the music
alone. Musical pieces and the order that they are in existing instruction books or etudes
are empirically selected by composers or players. There are no quantitative indicators
at present. We need to start by defining the difficulty as the difficulty appropriate for
each player: what is difficult in the first place and what are the factors. It is possible to
more accurately analyze difficulty by defining the complexity of the actual actions of
specific guitar techniques.

In our previous study, we developed the Guitar Rendition Ontology (GRO). It can
serve as a guideline for playing classical guitar on learning and teaching sites [6]. The
ontology consists of 96 concepts that describe the relationships between renditions and
18 properties that explain the features of the concepts. We defined three properties for
describing the processes of actions for each rendition as the core structure of the guitar
rendition concept, that is, action, primary-action, and conditional-action. The descrip-
tions give information on the appropriate way to perform these actions.
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In addition, we focused on guitar renditions used in real performances and inves-
tigated the trends and patterns of renditions using GRO [5]. However, the number of
renditions alone was not sufficient for accurately determining the difficulty of a per-
formance. To overcome this problem, we attempted to evaluate musical compositions
quantitatively by defining the complexity of a rendition on the basis of the ontology
structure of GRO. This approach enables a new framework that can support music se-
lection for various instruments. Our goal is to provide indicators for selecting music for
classical guitar through an analysis of traditional etude books and a discussion.

The organization of the paper is as follows. In Section 2, we mention related works,
and in Section 3, we briefly describe the Guitar Rendition Ontology, discuss the prob-
lems with it and how to overcome them, and present a new version of it. In Section
4, we first investigate the characteristics of guitar renditions in existing etude books.
Then, in Section 5, we present a detailed method for defining the complexities of guitar
renditions and analyze the difficulty of etude pieces. In Section 6, we conclude with a
summary and overview of future work.

2 Related Works

There are several approaches related to music selection. One of them is music recom-
mendation, and many systems have been designed by using neural network [4], deep
learning [3], emotion recognition [9], and so on. Regarding the classical guitar, [7]
analyzed guitar pieces from the perspective of information entropy and provided an in-
dicator to support music selection. The situation we are trying to support in this study
is that of an instrumental player selecting a piece of music. We thus need to take into
account information related to movement that could represent the difficulty of the actual
performance.

The field of knowledge processing, several ontologies related to music have been
developed: The Music Ontology (MO) for describing metadata about music in detail
[12]; Music Theory Ontology for conceptualizing musical and performance symbols in
music notation [13]; Two Ontologies focusing on Feedback in music education [16];
Musical Forms and Structures Ontology (MFSO) and Musical Performance Ontology
(MPO), which are developed by extending MO, deals with the musical form and its
components, as well as the subjective interpretation and advice (emotion, expression,
fingering) of the individual [14]. In addition, MPO defines an ”InstrumentTechnique”
class that can handle the movements and fingering necessary to realize musical expres-
sion. However, it does not specify the style of rendition and the actions involved, which
are the important elements of this paper, nor does it discuss the application of them to
music selection. Therefore, we believe that our approach is novel and will contribute to
the study of instrumental performance.

3 Improving Guitar Rendition Ontology

In this section, we describe the problems with the present Guitar Rendition Ontology
(version 2.4) and how to improve it.
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Classes and properties: There are important techniques that are not defined or named
as common guitar renditions but are used by many advanced players. One of them
is Curve ceja, a subclass of Press string rendition. In this technique, the index finger
arches and presses down on the high and low strings, except for the middle string, in
order to play only the necessary strings with minimal force. We thus added the Curve
ceja. Regarding the Ornament rendition, we added the following four ornaments that
were missing: Acciaccatura, Appogiatura, Double appoggiatura, and Schleifer. In the
properties, we added “action4” to describe an action in more detail, and we defined
“action” as the upper layer of actions 1 to 4.

Until GRO version 2, we classified several renditions by using numbers such as
Cutting1 and 2, Tremolo1 and 2, and Tune down1 and 2. However, these numbers cannot
characterize each rendition. Therefore, we gave detailed names to these renditions such
as Cutting with right hand and by both hand, Tremolo by four fingers and by one finger,
and Tune down with right hand and with left hand.

Description of actions: We modified the action descriptions for about 30 renditions.
The problem with the previous version of GRO was that the details of the specifica-
tions for some of the actions were not enough. For example, for Tremolo, the order
of plucking with the right finger is usually p, a, m, and i (initials in Spanish, meaning
thumb, ring, middle finger, and index finger), so a description up to “action4” is nec-
essary for each finger. However, the previous version described these four fingers by
grouping them together in “action1.” To overcome this problem, we tried to break down
the actions into smaller pieces and describe them (Figure 1). As Ornament renditions
and Figueta are also techniques that consist of two or more notes, we improved them to
describe the action for each note. However, the explanation of which string is actually
plucked is not uniquely determined, and this is a subject for future work.

Fig. 1. Description of actions in Tremolo by four
fingers

Entity / Axiom type Count
Axiom 1487
Logical axiom 543
Declaration axiom 314
Class 290

-Guitar rendition class 106
Object property 23

Table 1. Ontology metrics of GRO version 3.

Table 1 is a overviews of the improved version4. This ontology consists of a total of
313 entities, counting classes, and object properties. The number of classes regarding
Guitar rendition and the number of properties were increased from version 2.4, from 97
to 106 and from 21 to 23, respectively. Furthermore, axioms that were a combination of

4 https://github.com/guitar-san/Guitar-Rendition-Ontology
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logical, non-logical, and declaration axioms were increased in number by 119 to 1487
by improving the action descriptions in its subclass.

4 Guitar Renditions in Existing Etude Books

This section focuses on learners and investigates what types of renditions appear in
existing etude books. There are two cases when making an etude book: (1) books cre-
ated by the composers themselves and (2) books chosen and organized by performers.
Therefore, we tried to identify the differences in renditions when etude books were
created from different perspectives.

Since the number of musical pieces varies from book to book, we chose etudes No.
1 to 10 as the subject of our music analysis. We added technique-related information to
the musical scores’ data and extracted information from MusicXML. Here, one of the
authors, who is a guitarist, arranged renditions based on the information already written
in the scores.

4.1 Etude books created by composers

　 The etude books we analyzed are as follows. These were created by two composers
from the classical period and a modern composer.

Estudios Sencillos by Leo Brouwer: Leo Brouwer, who was born in Havana in 1939,
is a composer, guitarist, conductor, researcher, teacher, and cultural promoter in the
modern age. Estudios Sencillos [2] is a famous material that has been embraced by
many players and by many music schools in their curricula [11].

25 Etudes Op. 60 by Mauro Carcassi: Matteo Carcassi (1796-1853) was an Italian
guitarist, composer, and pedagogue and is best known for his pedagogical works.
His 25 Etudes Op.60 are considered essential works for guitar students. After gui-
tarist Miguel Llobet (1878-1938) added information on fingering, it has been highly
regarded as a good teaching tool for learning modern fingering [10].

12 Etudes Op. 6 by Fernando Sor: The great Spanish composer and guitarist Fer-
nando Sor (1778-1839) is known for his many guitar compositions. His opus num-
bers range up to about 63, and these consist of many solo pieces, guitar duets, and
songs and guitar pieces. We chose his opus 6, which is known as advanced grade,
from several etudes to compare the above books.

Figures 2 to 4 indicate the number of renditions to each etude and the information
entropy calculated from them. The etudes of Brouwer and Carcassi have a similar ten-
dency of using Full planting in early numbers and Descending slur and Ascending slur
in late numbers. In comparison, the etudes of Sor are structured in such a way that these
are used alternately.

Carcassi’s etude is often used most on a lesson sites among the above three etudes.
The edition by Yasumasa and Seiko Obara, which is often used in Japan, notes that
“There are 25 pieces in this collection, and we would like you to follow them in order.
The reason is that this is one composition consisting of 25 pieces, all of which are
related to each other in key. When you can play all 25 pieces correctly from memory,
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you are considered to have achieved a certain level of perfection, hence it is not desirable
to practice only one or two pieces” [10]. This suggests that the composer arranged
the pieces with the same intention, as the order of the pieces is an important factor in
learning the guitar. In fact, Figure 3 demonstrates an increase in both the number of
renditions and the information entropy.

In Estudios Sencillos, Brouwer stated that “This is the beginning of a series of etudes
that were composed for the real guitar apprentice. Every technical problem is separated
by the degree of difficulty of the rest of information. If, for instance, there is an arpeggio
for the left hand, we are going to do it so that the other hand, in this case the right one,
does not find much problem.” This suggests that he was as meticulous in composing
and structuring his etudes as Carcassi, or even more so. At least, his etudes showed a
similar trend to Carcassi’s than to Sor’s.
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Fig. 2. Change of renditions in Estudios Sencil-
los by Leo Brouwer.
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Fig. 3. Change of renditions in etude op. 60 by
Matteo Carcassi.
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Fig. 4. Change of renditions in etude op. 6 by Fernando Sor.
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Fig. 5. Change of renditions in Sor’s etudes by
Andrés Segovia.
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Fig. 6. Change of renditions in Sor’s etudes by
Yasuo Abe.
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4.2 Etude books created by players

　We took up Fernando Sor, the composer described in the previous section, and an-
alyzed two etude books collecting his works. These books were published by famous
guitarists, and they include pieces other than Op. 6, regardless of the opus number. The
data was extracted on the basis of the fingering of each guitarist written in the score.

Twenty Studies by Andrés Segovia: Master musician Andrés Segovia (1893-1987)
has selected 20 of Sor’s etudes and edited them in a rational order with instructions
on fingering, conception, and speed [15].

25 Etudes by Yasuo Abe: This book, which was published by Yasuo Abe (1925-
1999), is a collection of Sor’s most important etudes for learning all the advanced
techniques of the guitar [1].

As shown in Figures 5 and 6, the result differs from Sor’s 12 Etudes Op. 6 in that
the overall number of renditions is small but that of a few etudes is extremely large.
According to Segovia, Twenty Studies can be used not only for improving students’
technique, but also for maintaining advanced players’ technique to a certain level [15].
It includes arpeggio, chords, legato, left hand fingerings, ceja exercises, and many more
forms.

Concerning the order of the pieces, Abe noted that “This book is arranged in an
easy-to-follow order, which is not the same as Sor’s opus numbers,” and “Please prac-
tice in order from the beginning.” This means that the order of the pieces is an im-
portant factor in this book. However, it was difficult to identify a specific pattern from
these graphs that indicates the above intents. This suggests that, unlike the composer,
the players made their selections and ordered the pieces on the basis of their very sub-
jective impressions when playing the pieces.

5 Analyzing Complexity of the Performance

Each guitar rendition requires a different set of actions. The load on the player is dif-
ferent when using a rendition that requires multiple actions or when using a rendition
with simple actions. In other words, the complexity of an action relates to the diffi-
culty of the performance. Therefore, we clarified the complexity of each rendition on
the basis of the description of actions in the GRO in this section. Here, we analyzed
renditions that are located at the bottom of the Guitar Rendition Class hierarchy and
contain descriptions of actions.

5.1 Complexity of guitar rendition

The calculation rules for weighting properties and classes are as follows.

1. Action Related Properties: Weight of 1 to each of the following properties that rep-
resent the relationship of the actions: “action1,” “action2,” “action3,” “action4,”
“conditional-action1,” and “conditional-action2.” We excluded “primary-action”
and “playing-action” because actions 1–4 contain them.
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2. Detailed Properties: Some actions have restrictions or requirements in describing
the actions in detail such as “direction,” “number,” “place of action,” “part of hand
or finger,” ”timing,” “used finger,” “used string,” “tool,” and “ornament tone.” We
believe that these are related to the complexity of an action. Therefore, the number
of properties described in each rendition was additionally weighted.

3. Player’s Action: It is not only the relationship between actions, but also the type of
movement that is important. In the GRO, 22 actions are defined in the class called
Guitar player’s action. We weighted these actions on a scale of 0 to 3. For example,
“pluck string” and “touch string” are 0, “press string” and “pick up string” are 1,
and “rub string” and “cross strings” are 2. Regarding “use slur,” we used the highest
value of 3 because Slur is defined as a rendition. These values are arbitrary and can
be individually adapted to the player.

Figure 7 shows a treemap chart with the complexity value of each rendition repre-
sented by the area of the rectangle. The range of values is from a complexity of 1 to
16. Turn with left hand, a subclass of the Ornament rendition, showed the largest value
16, and other renditions in the same category also tended to map high values. In com-
parison, the Fingering rendition values tended to be low, ranging from the lowest value
of 1 for Al aire to 8 for Figueta, because this is a basic technique of classical guitar.
Percussive rendition was also similar, with values ranging from 3 to 8. Moreover, all
renditions of Note value rendition were low at 2.

The values of Articulation rendition, Chord rendition, Pitch change rendition, and
Timbre rendition varied. The reason for the large difference in values between both Slur
(also Slide) and Tapping for the Articulation rendition is that the former is a technique
learned at the beginning stage, while the latter is an applied technique and uses the
attribute “use slur” in GRO. For Chord rendition, which requires techniques using mul-
tiple strings, Tremolo and Rasgueado had a large area. Tremolo is an especially difficult
technique that even some professional guitarists are not good at.

The 12 renditions, extracted in the previous section are represented by black boxes.
As mentioned above, Tremolo had the largest value because it is a difficult technique.
Ceja related renditions were large because they required advanced techniques that are
performed by pressing multiple strings with a single finger. It is reasonable that the
Descending slur, which is played by hooking and plucking the string with the left finger,
was larger than the Ascending slur, which is played just by tapping the string with the
left finger. Descending slur and Acciaccatura are the same action, so the complexity
values are equivalent. Staccato and Sul ponticello were small because they require the
simple action of muffling or changing the plucking position with the right finger.

From these results, we found that the complexity indicator corresponds generally
to the intuitive difficulty of a rendition. Applying these complexity values to musical
pieces can be provided an effective indicator for music selection. However, there is a
problem with a few of the rendition values. Full planting is a simple technique where the
fingers are set before plucking, so the value should be lower than that of Arpeggio. We
will discuss this further towards a more complete complexity calculation that matches
the player’s intuition.



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

296

      
    
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Fig. 7. Treemap of complexity of each guitar rendition.

5.2 Analyzing difficulties of etudes

In regarding to guitar renditions, we think that there are three types of difficulty when
playing a musical instrument:

1. Difficulty of the rendition itself
2. Difficulty with the number of renditions
3. Difficulty with the order of the renditions

In this study, we considered the complexity value of a rendition (defined as complexityr,e)
presented in Section 5.1 as an indicator of type 1. In addition, we attempted to extract
indices related to types 2 and 3 by calculating TF-IDF (Term Frequency Inverse Doc-
ument Frequency) [17] by focusing on the number of occurrences of a rendition. The
TF-IDF value is expressed by the following formulas:

TF-IDF = tfr,e · idfr tfr,e = log
nr,e∑
k nk,e

+ 1 idfr = log
|D|

|{d : tr ∈ d}|
+ 1,
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where nr,e is the value obtained by weighting complexityr,e to the rendition frequency
for an etude fe,

∑
k nk,e is the total number of renditions (including the weight of

complexityr,e) in the etude, |D| is the total number of etudes in a corpus, and {d :
ti ∈ d} is the number of etudes that contain at least one rendition. Furthermore, the
difficulty level of each etude, which is expressed by difficulty(e), is calculated from
the following formula:

difficulty(e) =
∑
k∈e

TF-IDFk,e.

Figure 8 indicates the difficulty level of each etude number for the five etude books
analyzed in Section 4. Although Carcassi’s etude was relatively high and Brouwer’s
etude was low, both of them had a tendency for the difficulty level to increase: R2=0.470
and R2=0.276. Moreover, Abe’s etude showed the similar tendency of the line as Car-
cassi’s etude (R2=0.261). These etudes are popular pedagogical materials around the
world. As described in Section 4, it is clear that they took into account the order in
which learners can easily practice. For the etude books made by Sor and Segovia, we
could not determine whether the difficulty level corresponded to the etude number be-
cause the graphs remained almost unchanged. In fact, there are no explicit instructions
in those two books regarding the order of the pieces. Therefore, we found that our ap-
proach was somewhat consistent with the subjectivity and intentions of the creator (i.e.,
the author of the etude book). We need to increase the number of analyzed musical
pieces and conduct a subjective evaluation of the players using the results obtained in
this study.
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Fig. 8. Difficulties of etudes in five books.

6 Conclusion

In this study, we presented an approach to providing an indicator of the complexity
of a guitar rendition and the difficulty of a piece on the basis of the Guitar Rendition
Ontology (GRO). We first modified the GRO to describe detailed actions of renditions.
Second, we investigated the number of renditions in existing traditional etude books.
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Third, we analyzed the renditions’ complexities and visualized them with a treemap.
Finally, we calculated the difficulty for each etude by using TF-IDF and complexity
indicators. As a result, we found that the etude number in etude books corresponded
to the subjective perceived difficulty of the creator. The contribution of this paper is to
propose a novel approach that quantitatively measures the difficulty of music itself by
using a complexity indicator calculated on the basis of the ontology structure of GRO.
The advantage of our method is that it is individually adaptable. As a future work, we
will construct a framework that will enable music to be selected from more diverse
perspectives.
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