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Welcome to CMMR 2021

We are pleased to welcome you to the 15th edition of CMMR being held online. We
hope that by participating in CMMR 2021 and actively interacting with each other, you
will be able to actively exchange ideas, gain rich inspiration, and make great progress
in your research.

The global corona disaster also had a great impact on the CMMR conference. Orig-
inally, we, the organizing committee, had planned to hold the CMMR in Tokyo in
November 2020. The deadline for submissions was set at April 2020, and the call for
papers was distributed. However, since we could not foresee the end of COVID-19 in-
fection unfortunately, we made a tough decision to postpone the conference for one
year, only two weeks before the deadline of April. Thus, we are finally very happy to
be able to hold the conference online and to welcome so many participants!

CMMR 2021 takes place using Zoom, Slack, and YouTube over a period of five
days, and the sessions have been arranged according to Asian, European, and American
time zones. To take advantage of the nature of the online conference, we have made
the participation fee free for those who only watch the sessions. Instead of giving up
social events such as receptions and banquets, we have set up a number of interaction
channels on Slack, and in addition to Zoom, we also provide simultaneous and archived
streaming on YouTubeLive.

The conference theme of CMMR 2021 has been set at “Music in the Al Era.” In
music informatics, interdisciplinary collaborative research has already been conducted
with various related fields such as linguistics, brain science, psychology, sociology, ped-
agogy, and art. Recently, the rapid development of artificial intelligence technology is
changing not only the nature of interdisciplinary collaborative research, but also the
meaning of music for people and society. CMMR 2021 aims to share knowledge with
participants who share a common background in music informatics, through in-depth
discussions on the current status and vitalization of interdisciplinary research and the
use of artificial intelligence technology.

We are delighted to include a keynote speaker and two invited speakers based on
the conference theme “Music in the Al Era.” The keynote lecture is given by Prof.
Shuji Hashimoto (Professor Emeritus and former Vice President of Waseda Univer-
sity, and former Vice President of the International Computer Music Association), and
the invited lectures are given by Dr. Gaetan Hadjeres (SONY CSL, Paris) and Prof.
Tadahiro Taniguchi (Professor, Ritsumeikan University). The music works are avail-
able on YouTube, and we have set up the music sessions in which composers explain
music works.

Lastly, I briefly introduce the organizing committee. In Japan, the Special Inter-
est Group on Music (SIGMUS) has been active since 1993, and playing a key role in



incubating music informatics in collaboration of industry and academia. Most of the
members of the organizing committee belong to SIGMUS, and have been engaged in
research activities for a long time. SIGMUS financially supports CMMR 2021.

We would like to express my sincere gratitude to all the members the Scientific

Program Committee, Music Committee, and Steering Committee, and the sponsors for
their cooperation in organizing CMMR 2021.

Keiji Hirata
General Chair
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Message from Scientific Program Chairs

Thank you for attending the 15th International Symposium on Computer Music Multi-
disciplinary Research (CMMR 2021), the first online conference in a series of CMMR
conferences. Holding CMMR 2021 in a fully online format was a very difficult deci-
sion for us. When we decided to postpone CMMR 2020 for one year, we expected that
we could hold the conference onsite in 2021. However, the worldwide COVID-19 pan-
demic has not yet ended; therefore, we decided to hold CMMR 2021 online.

Despite the online conference, the paper review process was carried out in almost
the same way as for the past CMMR conferences. Each submission was peer reviewed
by three experts in principle. The review process was single-blind. From various regions
in the world, including Japan, Europe, the United States, Canada, Brazil, and India, 48
papers were submitted. Out of them, 33 papers were accepted. As the conference name
suggests, these papers cover a wide range of topics including audio signal processing,
music information retrieval, artistic applications of artificial intelligence, performance
modeling, and computational music analysis. Although recent CMMRs included poster
and/or demo presentations, we collected only long and short papers (10 and 6 pages, re-
spectively) with oral presentations to make the online conference as simple as possible.

The most important policy in organizing CMMR 2021 in the online format is to
encourage both synchronous and asynchronous discussions. To encourage synchronous
discussions, we will use Zoom, an online video meeting platform. Each presenter will
present his/her work on Zoom using the screen share function. In addition, we will
set up an opportunity for discussions, namely, post-session discussions, using Zoom’s
breakout room function after each session. We sometimes enjoy discussion at the cof-
fee breaks in onsite conferences. The post-session discussion aims to provide a similar
opportunity to do this. To encourage asynchronous discussions, we use YouTube and
Slack. Each presentation will be broadcast on YouTube Live and archived as YouTube
video content. Participants can therefore watch presentations after the sessions. We
think this process will enable people worldwide to more easily participate in the confer-
ence because some sessions will be held at midnight in some time zones. After watching
video presentations on YouTube, the participants will be able to ask questions on our
Slack workspace. To encourage discussions on Slack, we have established a separate
channel for each presentation.

The music program, which is also an important part of CMMRs, was also affected
by COVID-19. When we planned to hold the conference onsite, we were preparing a
live concert at a hall in Japan. Unfortunately, however, the music program committee
(Chair: Prof. Shintaro Imai) had to decide to change a place for presenting musical
works from a real live concert to online video sharing on YouTube. Nevertheless, 32
various musical works from over the world were submitted, and 13 were accepted.
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We would like to thank all the people who submitted and reviewed papers and all
the participants of the conference. We would, in particular, like to thank the program
committee members who had to review many papers within only one month, because
the paper deadline was set one month later than usual to encourage a large number of
paper submissions. Without each program committee member’s cooperation, it would
not have been possible to hold the conference.

We hope all participants enjoy the conference.

On behalf of the scientific program committee chairs,
Tetsuro Kitahara
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Keynote Lecture

Shuji Hashimoto

Professor Emeritus and Research Advisor, Waseda University

Shuji Hashimoto received the B.S., M.S. and Dr. Eng.
Degrees in Applied Physics from Waseda University,
Tokyo, Japan, in 1970, 1973, and 1977, respectively.
He was an Associate Professor in the Department
of Physics, Toho University from 1979. In 1991 he
moved to Waseda University as a Professor of the De-
partment of Applied Physics. In Waseda University he
served as the Director of the Humanoid Robotics In-
stitute for ten years from 2000. During 2006-2010 he
was the Dean of Faculty of Science and Engineering.
He was appointed and served as the Senior Executive
Vice President for Academic Affairs and Provost of
the University from 2010 to 2018. He has been one
of the leaders of the Gundam Global Challenge since
2014. Currently he is a Professor Emeritus and Re-
search Advisor of Waseda University. He joined XELA Robotics as the CEO in April,
2019. His research interests include Artificial Intelligence, Robotics, “KANSEI” Infor-
mation Processing, Sound and Image Processing and Meta-Algorithm.

Lecture: Music in the Al era

Many times, we were declared “Finally real artificial intelligence has been completed”
and we were betrayed each time with various excuses. However, looking at the recent
progress in Al technology, it seems that this time it might be true. Powerfully connected
computers with big data seem to present adequate solutions to complicated problems
that could not be solved ever before.

Science and engineering have been an integral inseparable to form technology. Sci-
ence organizes discovered knowledges and construct the theory to understand, while
engineering presents means and methods that put the theory into practical use to pro-
vide solutions to real world problems. But presently the deep-learning-based Al pro-
duces solutions directly from a huge accumulation of raw data. It seems that science is
blown off from the traditional picture of technology. The rest is engineering alone that
delivers solution. At present, Al works well most but not all. However, it does not tell
us why the answer is correct. As many people complain, there is no proof of validity.
The output of Al often sounds like God’s revelation. It is a black box we never know its
inside. What we can do is only to believe in Al, saying that “because the computer is
aware of all.” With the recent rise of Al, traditional decent researchers, who accumulate
appropriate processes based on theory and knowledge to approach the solution, seem
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to have been exiled from the main stage in many fields including music technology and
science.

Science seems to be at stake in this way, but I am not pessimistic about the current
situation. We need a science to understand things. We need engineering to make things.
Science hates black box. While engineering often accept black box if it is useful. Useful
tools accelerate science. Al is not yet in the final stage neither human intelligence is
not. I believe we needs to start a new story of science together with a new tool Al
Music is fascinating field in elucidating human intelligence and creativity as it contains
philosophy and arts, science and engineering, I would like to talk my story on Music in
the Al Era.
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Gaétan Hadjeres

Invited Lectures

Sony CSL Paris Music Team

Gaétan Hadjeres graduated from the Ecole Polytech-
nique (France) and obtained a master in Pure Math-
ematics from Paris 6 University (Sorbonne Univer-
sités). He joined Sony CSL Paris in 2014 to do a
Ph.D. thesis on music generation under the supervi-
sion of Francois Pachet and Frank Nielsen. In 2018,
Gaétan successfully defended his dissertation entitled
“Interactive Deep Generative Models for Symbolic
Music” and is now a permanent member of the Sony
CSL Paris Music Team. Parallel to his scientific back-
ground, he studied music composition at the Conser-
vatoire de Paris (CNSMDP) and he is also a pianist
and a double bass player. His works (DeepBach, the
Piano Inpainting Application) focus on the creation of
AL tools able to assist musicians during composition,

enrich their creative process and make music composition playful and accessible to a

wide audience.

Lecture: Developing Artist-centric Technology

Important progress in generative modeling has been made over the last few years, allow-
ing researchers to envision novel creative usages with impressive results. However, we
can notice that such A.I. algorithms are often not easily accessible or controllable by an
artist, so that their widespread adoption by content creators is yet to come. In this talk,
I will present various examples of our modular approach at Sony CSL to bridge the gap
between researchers and artists through the development of A.I. assistants. Setting the
interaction with an artist as our core requirement brings up new interesting challenges
and we hope it will help democratizing the latest advances in A.l. amongst musicians.
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Tadahiro Taniguchi

Professor, College of Information Science and Engineering,
Ritsumeikan University

Tadahiro Taniguchi received the ME and Ph.D. de-
grees from Kyoto University in 2003 and 2006, re-
spectively. From April 2005 to March 2006, he was a
Japan Society for the Promotion of Science (JSPS) Re-
search Fellow (DC2) at the Department of Mechanical
Engineering and Science, Graduate School of Engi-
neering, Kyoto University. From April 2006 to March
2007, he was a JSPS Research Fellow (PD) at the same
department. From April 2007 to March 2008, he was
a JSPS Research Fellow at the Department of Systems
Science, Graduate School of Informatics, Kyoto Uni-
versity. From April 2008 to March 2010, he was an
Assistant Professor at the Department of Human and
Computer Intelligence, Ritsumeikan University. From
April 2010 to March 2017, he was an Associate Pro-
fessor at the same department. From September 2015
to September 2016, he is a Visiting Associate Profes-
sor at the Department of Electrical and Electronic Engineering, Imperial College Lon-
don. From April 2017, he has been a Professor at the Department of Information and
Engineering, Ritsumeikan University. From April 2017, he has been a visiting general
chief scientist, the Technology division of Panasonic, as well. He has been engaged
in machine learning, emergent systems, intelligent vehicle, and symbol emergence in
robotics.

Lecture: Generative Models for Symbol Emergence based on Real-World
Sensory-motor Information and Communication

Music and language have structural similarities. Such structural similarity is often ex-
plained via generative processes. This invited lecture introduces the recent development
of probabilistic generative models (PGMs) for language learning and symbol emer-
gence in robotics. Symbol emergence in robotics aims to develop a robot that can adapt
to the real-world environment, human linguistic communications, and acquire language
from sensorimotor information alone (i.e., in an unsupervised manner). To this end, a
series of PGMs, including ones for simultaneous phoneme and word discovery, lexi-
cal acquisition, object and spatial concept formation, and the emergence of a symbol
system, have been developed. This lecture also introduces challenges related to inte-
grating probabilistic generative models and the possible intersection between symbol
emergence in robotics and computational music studies.
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Suiview: A Web-based Application that Enables Users to
Practice Wind Instrument Performance*

Misato Watanabe!, Yosuke Onoue!, Aiko Uemura!, and Tetsuro Kitahara®

Nihon University, Tokyo, Japan
chmi19013@g.nihon-u.ac.jp, {onoue.yousuke, uemura.aiko, kitahara.tetsurou} @nihon-u.ac.jp

Abstract. This paper presents a web-based application that enables users to
check the stability of the pitches, intensities, and timbres of the sounds they play.
Amateur musicians have opportunities to play wind instruments, at a brass-band
club at school. To make sounds with the stable pitches, intensities, and timbres,
players have to carefully control the shapes of their mouth and lips, the strength
of the breath, and their vibration. But this is difficult for most amateur musicians,
who rely on expert players to check whether they are appropriate and advise
them how to improve them. To solve this problem, we have been developing a
web-based application to enable amateur musicians to check whether the pitches,
intensities, and timbres of their sounds are stable without help from an expert
player (https://suiview.vdslab.jp/). In this paper, we describe its basic system de-
sign, the current implementation, and preliminary results of its trial use.

Keywords: Wind instrument, Musical practice, Stability, Web application

1 Introduction

Wind instruments are popular among amateur musicians. They are indispensable in
brass-band clubs at junior high school and/or high school, and many people enjoy play-
ing a wind instrument as a hobby. However, playing a wind instrument is not easy. To
produce sounds with stable pitches, intensities, and timbres, players have to carefully
control the shapes of their mouth and lips, the strength of the breath, and their vibration.

One problem in learning a wind instrument is a lack of appropriate instructors. In
the case of the above-mentioned brass-band clubs at school, the responsible teacher at
the club might not be a wind instrument expert. At such clubs, it is often common for
novice-level players to teach freshman players. Also, there are fewer music schools that
teach wind instruments than the piano.

Wind instrument performances have been investigated from different points of view
such as acoustic, psychological, and physiological ones. Brown [1] investigated acous-
tic features for automatic identification of woodwind instrument sounds. Hirano et al.
[3] analyzed muscular activity and related skin movement during French horn perfor-
mances. Micheal [5] examined the effects of self-listening and self-evaluation in the
context of woodwind and/or brass practice by junior high school instrumentalists, and
found that self-evaluation was important for improving the instrument.

* This research was supported by JSPS Kakenhi Nos. JP-19K 12288 and JP-20K19947.
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More recently, there have been attempts to develop systems that allow users to easily
understand how their performances are good from visual feedback or computational as-
sessment. Pati et al. [7] applied deep neural networks to automatic assessment of student
musical performances. Giraldo et al. [2] developed a system that analyzes sound quality
of violin performances and provides visual feedback to users in real time. Knight et al.
[4] developed a visual feedback system of musical ensemble focusing on phrase artic-
ulation and dynamics. Morishita et al. [6] developed a system that gives novice practi-
tioners (especially children) visual feedback of acoustic features in long-tone training of
wind instruments. These systems have been aiming at a goal close to ours, but most of
them are not designed to enable anyone to easily check his/her performances on his/her
smartphone and/or tablet.

In this paper, we present a web-based application for practicing playing wind in-
struments by themselves. The important is to give users objective feedback. Because
its target users are novice players, we consider that sounds should be stable, in other
words, sounds should keep a close pitch, intensity, and timbre from the beginning to the
end. Our app. analyzes the pitch, intensity, and timbre of sounds recorded on the app,
evaluates their stability, and gives visual feedback to the user. It also provides a function
that enables the user’s teacher to give comments to the recorded sounds.

2 Basic Design and Functions

Our app aims to provide wind instrument practicers with useful information about the
sounds performed by them. For novice-level players, as discussed in the Introduction,
acquiring skills for sounding stably is important. Therefore, one of the important func-
tions of our app. is therefore to visualize the stability of the acoustic characteristics (i.e.,
pitches, intensities, and timbres) of the sounds performed by the user.

Recognizing how well the user is incrementally improving such stability day by
day is also important. Therefore, we implement a function for visualizing recording-
by-recording variations in the stability of the pitches, intensities, and timbres as well as
visualizing the acoustic characteristics of each recording.

Also, we implement a feacher-to-student comment function. Although objective vi-
sualization is useful for novice players, subjective evaluation and comments by their
teacher is also important. By linking a teacher-mode user to student-mode users, the
teacher-mode users can listen to the recordings of the linked student-mode users and
give them his/her evaluations and comments.

2.1 Recording

Once the user opens and logs into our app., he/she can select what to play from a long
tone, a scale, and an arpeggio (Fig. 1). The scores displayed are shown in Fig. 2. After
selecting one from these three scores, the user starts recording his/her performance with
a sampling rate of 48 kHz (Fig. 3). Recorded sounds are automatically stored on our
web server with some metadata such as the user ID, and the recording date.
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Fig. 5. Examples of visualization of acoustic features of recorded sounds

2.2 Visualizing the acoustic characteristics

Once a recording is stored on the webserver, its acoustic analysis starts. The funda-
mental frequency (FO), amplitude, and spectral roll-off are extracted with a 512-point
shift from the recorded sound. We use Librosa (https://librosa.org/) for extracting these
features. Next, these features are plotted on the screen, as shown in Fig. 5 (a) to (c).
Features for multiple sounds can be plotted on the same screen, as shown in Fig. 5 (d).

2.3 Visualizing the recording-by-recording variations in the stability

The stability of the pitch (FO), intensity (amplitude), and timbre (spectral roll-off) is
calculated for each recording. The stability is defined based on the temporal standard
deviation of each feature. Let 0rg, 0Amp, 0sp represent the temporal standard devia-
tions for the FO, amplitude, and spectral roll-off, respectively. Then, their stability s;
(i € {FO, Amp, Sp}) is defined as s; = 100exp(—o;/a;), where a; are pre-defined
constants (apg = 4, aamp = 70, agp = 1500). Thus s; has a value between 0 to 100.

The stability is visualized in two ways to enable the user to check the stability for
multiple recordings at a glance (Fig. 6). One is a stacked bar chart that represents the
stability of each of the pitch, intensity, and timbre (Fig. 6 (a)). The other is a line chart
that represents overall stability scores (Fig. 6 (b)).

2.4 Teacher-to-student comment

Logging in with the teacher mode, the user can listen to sounds recorded by the linked
student-mode users and check the visualization of their acoustic features and stability
scores. Also, using the teacher-mode, the user can write comments. The comments are
automatically sent to the corresponding student-mode user.
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Fig.7. Screen for the teacher mode

3 Trial Use

Three participants used our app for a preliminary evaluation of the effectiveness of the
app. Out of the three participants, one (P 1) was an active player with an intermediate-
to-advanced level while the other two (P 2 and P 3) were novices, though they had
experience in playing instruments in the past.

Logging in with the student mode, the participants played a long tone, a scale, and
an arpeggio on the clarinet several times and recorded them on our app. They saw the
visualization of their sounds made by our app. and were asked to answer the following
questions on a four-level scale (4: agree, 1: disagree):

Q1 Do you think this app helps you produce stable sounds?
Q2 Did you get useful information from the visualization?
Q3 Are the stability scores close enough to your own impression?

The results, listed in Table 1, imply that the participants comparatively highly eval-
uated our app. In fact, the two novice-level participants gave us comments such as:

— By listening alone, it was difficult to find what to improve to produce stable sounds.
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Table 1. Results of the preliminary questionnaire (1 to 4)

P

[Q1] Do you think this app helps you produce stable sounds?
[Q2] Did you get useful information from the visualization?
[Q3] Are the stability scores close enough to your own impression?

NN W=
LR SN S S
B b WWw

— With graphical visualization , novice-level players could find what to improve.
— Line charts were easy to grasp which were good and which were not.

On the other hand, one participant answered that he/she could not understand what
each graph means. More intuitive visualization should be explored. We also received an
opinion that they wanted to see the analysis for sounds given by professional players.

4 Conclusion

In this paper, we presented a web-based application that enables users to recognize the
stability of wind instrument sounds played by them by visualizing their acoustic fea-
tures and stability scores. Once the user records his/her wind instrument sounds on the
app, their acoustic features including the pitches, intensities, and timbres are analyzed
as well as their stability is evaluated. Three participants in a preliminary experiment
gave us comments that the visualization was useful to produce stable sounds.

Although we focused on the stability of pitches, intensities, and timbres, more com-
plex expressions such as detailed dynamics would be important for more advanced
players. We will extend the app to support such advanced level players’ practice as well
as systematic evaluation of our app.
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Abstract. We present Triaume, a handheld augmented non-pitched percussive
musical instrument based on the triangle. Our proposal relies on a capacitive
thumb sensor, which allows controlling digital musical devices while preserving
the possibility of playing the instrument’s traditional techniques. We reduce the
augmentation invasiveness by using an external smartphone to emulate faders re-
lated to the instrument’s configurations. Triaume’s interaction proposals are built
from idiomatic techniques used in regional Brazilian music genres. We can use
the sensor as an on/off button that can, either on touch or release, trigger pre-
programmed percussive sounds that can be played together with the triangle’s
acoustic sound. Also, we use a low-pass filter to convert the digital sensor’s ac-
quisitions to a continuous value, allowing expressive synthesis control. Triaume
can be used in avant-garde music, and its interaction design favors its use in vari-
ations of traditional music.

Keywords: Triangle, Capacitive sensor,Pulse Width Modulation (PWM),Augmented
instrument, Brazilian music

1 Introduction

Traditional music instruments can be augmented with electronic sensors, which can ac-
quire signals to control devices like synthesizers and effect processors. These sensors
usually exploit the so-called spare bandwidth [1] , that is, movements or limbs that are
not used in the traditional playing techniques and, therefore, can be used for other pur-
poses. Augmented instruments can provide new expressive possibilities when compared
to their traditional counterparts.

This work presents an augmentation proposal for the triangle, a handheld non-
pitched percussion instrument traditionally used in several regional Brazilian music
genres such as Forrd, Xote, and Baido [2] . The acoustic triangle is usually held with
one hand using the index finger and played with the other hand using a metal mallet.
The instrument’s sound can be damped by closing the holding hand’s palm around the
triangle’s side.

Our augmentation proposal uses a single capacitive sensor [3], [4], [5], [6], [7], [8]
placed on the instrument’s upper corner. The sensor is isolated from the instrument’s
body and is activated with the holding hand’s thumb independently of the damping
or mallet striking actions. This placement allows an interplay between the traditional
techniques and the augmented possibilities.

11



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

This minimalistic augmentation barely impacts the use of the traditional techniques
but brings other challenges of its own. The first one is to allow the musician to configure
the instrument’s parameters during performance without bringing a computer to the
stage. We mitigate this problem using a smartphone, which provides all necessary faders
for this configuration. The second challenge is to provide a diversity of interactions that
can be creatively explored.

To tackle this challenge, we use mapping strategies inspired in the common (even
if not traditional) technique of playing other instruments, such as hi-hats (triggered
with a pedal), or sets of cowbells or carillons [9], [10], together with the triangle in
Brazilian regional music. In our proposal, we investigate the possibilities of triggering
events on sensor touch or on sensor release, inspired by the damp (close hand) and
release (open hand) gestures typically used in Forré music. They can be used to play
virtual instruments, in special percussive sounds, allowing the musician to play with
more instrumental layers.

Additional control possibilities can arise from encoding the sensor information
through time [11] . In our proposal, we use a low-pass filtering technique to convert
a sequence of on/off acquisitions to a continuous control signal, similarly to a Pulse
Width Modulation motor control [12], [13] . This allows using the capacitive sensor as
an interactive fader that can be controlled using rhythm.

2 Instrument Design

The triangle augmentation consists of three blocks, as shown in Figure 1. The first is
Triaume itself, which is a regular acoustic triangle with an attached capacitive sensor
and an ESP32 microcontroller [14]. The second is a smartphone that runs a MobMu-
Plat [15] patch and controls the digital configurations. Both of these blocks send Open
Sound Control (OSC) [16] packets to the third one, a computer that executes sound
synthesis and control in a Pure data (Pd) patch [17]. Each of these blocks is discussed
next.

2.1 Triaume Body

The augmented triangle has one single sensor, which is a capacitive sensor attached
to the triangle’s upper corner. As shown in Figure 2 , the sensor is isolated from the
instrument’s body using insulating tape. A distance was kept between the insulated
tape covered area and the region that is normally stroke by the triangle mallet when
applying techniques used in the context of Brazilian music. Mounting the sensor close
to the triangle’s tip reduces the sensor’s impact on the sound’s quality.

We used the Capacitive Sensor library created by Paul Badger [18], [19], which
allows to build high sensitivity sensors using only a resistor, a microcontroller, and an
electrode, which can be made of any conductive material. Our electrode was made using
copper tape and it was connected to a 1M{? resistor, linked to one of the ESP32 pins.
The library continually yields capacitance readings, which are disturbed by touching
the copper tape.

12
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Triaume Computer

Sensor
Data

ESP32 : 0sc

Microcontrolier E

Speaker

Pure Data Output

MobMuPlat

Smartphone

Fig. 1. System overview. The computer receives OSC packets both from the Triaume and from a
smartphone.

Both the sensor type and microcontroller model are chosen based on the idea of
developing a low-cost instrument since the acquisition of imported products in Brazil
is expensive due to taxes. In some cases, the final cost of imported products can reach
even twice the value of the original cost. [20]. Therefore, using low-cost components is
desirable for allowing easy access to the instrument.

The microcontroller is attached to the musician’s body, reducing its impact on the
instrument’s sound and playability. It sends the measured capacitance values to the
computer using OSC packets, which can use a RS-232 connection with serial line in-
ternet protocol (SLIP) [21] or UDP packages over a Wi-Fi connection. The RS-232
connection provides a lower delay, but requires a connection cable; conversely, the Wi-
Fi connection allows a greater mobility for the musician, but tends to have longer and
more unstable delays [22]. This simple setup is barely invasive to the instrument but
requires an additional device to provide configuration faders for performance usage, as
described next.

2.2 Smartphone

It is often desirable that control-to-sound mapping proposals allow on-site adjustments,
either during soundcheck or to change sonorities in different parts of a performance.
Our system provides this functionality using a smartphone application, shown in Fig-
ure 3. The application is based on MobMuPlat and sends the computer configuration
parameters using OSC over WiFi. Similarly to the knobs in a guitar effects pedal, the
application can be used intermittently on stage.

The advantage of using a software application is that it can be easily configured and
expanded as to match different sound processing proposals that might be built using
Pd. Moreover, because it is external to the triangle, it can be left in a safe place dur-
ing performance. Henceforth, this design option contributes to reduce the invasiveness
and flexibility of Triaume’s setup when compared to the idea of having physical knobs
attached to the triangle.
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Fig. 2. The capacitive sensor is attached to the triangle’s tip and isolated from the instrument’s
body using insulating tape.

2.3 Computer

The final block in the augmentation system is a computer, which executes a Pd patch
responsible both for converting the capacitive sensor’s continuous values to on/off in-
formation and for synthesizing audio to be played in a loudspeaker.

It is important to note that the conversion from continuous to on/off values could
be performed in the microcontroller. However, this conversion depends on a threshold
that changes depending on the sensor’s materials, electric noise, the instrument’s shape,
and the size of the musician’s hands. Therefore, this conversion is performed in the
computer, and the threshold is configured using the smartphone, as described in the
previous section.

The on/off sensor information is used to control sound synthesis using two different
strategies, as shown in Figure 4. For the first strategy, the sensor touch and release
gestures are immediately mapped into on/off information for sound activation. In the
second one, the on/off information is low-pass filtered, thus providing a continuous
sound parameter control. Each of these strategies is discussed next.

Using On/Off Information for Sound Activation A simple, immediate control strat-
egy is to map the on/off sensor to a synthesizer’s ADSR envelope controller. This allows
using the sensors as a key that triggers and sustains a particular sound. The sensor (and,
consequently, the related sound) can be played independently of the triangle’s damping
because it uses the thumb while the damping process uses the hand palm.

Although the sensor can provide the musician with another sound layer, it can be
hard to physically combine it with muting the triangle with the hand palm. For some
rhythmic patterns, it can be easier to play sounds when the sensor is released. It is pos-
sible to reach a myriad of rhythmic possibilities by combining the different activations
(on touch/on release) with sound synthesis configurations.
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Fig. 4. Mapping strategies. The on/off sensor can be used either on touch or on release (left). Also,
a low-pass filtering technique can convert the on/off information to a continuous signal (right).

Figures 5 and 6, respectively, illustrate both of these activation modes, showing the
on/off sensor data (upper panel) and the corresponding synthesized waveform. In both
cases, the parameters for attack speed and sustain were adjusted for minimal values,
which highlights the synchrony between the input signal and the sound output.Next, we
present our proposal to generate continuous control with the sensor.

Continuous Parameter Control: a PWM-like Approach Continuous controls can be
used in expressive sound control in important parameters that can not only be driven
directly by a binary event logic, like wet/dry levels, gains, and filter cut-off frequen-
cies. These parameters are usually controlled using faders, knobs, or sensors such as
accelerometers. In this section, we describe how to use the on/off sensor to provide
continuous control values.

The technique employed obtains continuous values from digital inputs using low-
pass filtering, similarly to using Pulse Width Modulation (PWM) [12], [13] control.
In PWM, the input signal is a square wave, which is filtered so that the output signal
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Fig. 6. Sensor data and sound output using trigger on release.

level is proportional to the fraction of time in which the input is high (that is, the duty
cycle). Equation 1 shows the relationship between the output signal level (Vout), the
value corresponding to high level signal (A), and the duty cycle (d).

Vout =Axd ey

In the on/off sensor, we can generate duty cycle variation by intermittently touching
and releasing the capacitive sensor. Low-pass filtering generates a smooth, continuous
signal, whose level is proportional to the duty cycle. Lower filter cut-off frequencies
lead to smoother signals but also to slower responses.

Figure 7 illustrates a demonstration of this technique. It shows an acquisition of the
on/off signal and the corresponding output after using a low-pass filtering with cut-off
frequency of 0.1 Hz. It can be seen that the filtered output increases accordingly to the
duty-cycle and can generate intermediate values wth some ripple.

This technique allows controlling effect or synthesizer parameters using a rhyth-
mic input generated by touching and releasing the sensor. This is especially desirable
because it allows using gestures that are close to those native to the Forré music reper-
toire, that is, playing rhythms with the hand. Moreover, touching and releasing parts of
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Fig.7. Data acquired while playing the augmented instrument and low-pass filtered output.

the instrument is also part of the traditional repertoire of many percussion instruments;
hence this technique can be applied in other types of drums and other music genres.

Interestingly, both mapping techniques can be combined, generating a sound trigger
that is simultaneous to a timbre control. This one-to-many mapping can generate new
expression possibilities that do not necessarily fit the regional music genres Triaume
was inspired in. The next sections will present tests made for instrument evaluation,
followed by comments regarding the possibilities obtained by its use.

3 Instrument Evaluation

We qualitatively evaluated our instrument aiming to identify some of its musical pos-
sibilities. Triaume was evaluated from the author’s viewpoint, using their own musical
experience, first focusing on the on/off sensor, then on the PWM-like control.

3.1 On/Off Sensor

As a first experiment, we programmed Triaume synthesizer to play a sample of a per-
cussive sound triggered by sensor release. A short track was recorded, and a part of
its waveform can be seen in Figure 8. The higher magnitude pulses correspond to the
synthesized sound and the lower magnitude ones to the acoustic triangle.

Triaume recorded sound

signal magnitude

0.0 0.5 10 15 20 25 3.0
time (s)

Fig. 8. Triaume sound record triggering a synthesized sound sample..
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In this test, the on/off trigger provided a quick response, which allowed playing
rhythms without a perceptible delay. The capacitive sensors have shown a high sensi-
tivity and were able to detect even more subtle touches. At the same time, the sensitivity
control mechanism allowed rejecting false positives in this detection.

In order to illustrate another musical possibilities, an audio demo was recorded
choosing different percussion sounds, and also synthesized sine, square and triangle
waves. An interesting outcome was obtained when using an alternate toggle mecha-
nism to play two different cowbell sounds' 2.

3.2 PWM-like Control

The PWM-like mechanism test consisted of linking the continuous control mechanism
to a FM synthesis control module implemented in Pd. Continuous values control the
modulating wave magnitude in the FM synthesis. Adjusting the the low-pass filter cut-
off frequency allows tuning continuous signal’s change rate speed.

Mapping these continuous values directly into synthesizer fundamental frequencies
would lead to an obvious one-to-one mapping strategy [23]. Using such a strategy can
lead to results next to the ones obtained when playing the Theremin, but with an in-
evitable ripple (as suggested by Figure 7).

For demonstration purposes, a song was composed and recorded by the authors in
order to show the new instrument application context. This song, entitled ’Forré do
OSC”, shows that the instrument can be used either inside the forré idiomatic, or for

avant-garde music®*.

4 Discussion

The results presented in this work demonstrate that Triaume can potentially bring new
expressive possibilities to the triangle. Its interactions were designed aiming at a low
invasiveness regarding the instrument’s traditional techniques. Even though one of the
authors plays Forré percussion, we could not perform any evaluation with external mu-
sicians due to the ongoing COVID19 crisis. However, the song composed by the au-
thors shows an idiomatic Forré example, and at the same time, innovative possibilities
for other music genres.

The idea of using low-pass filtering to convert on/off signals to continuous values
is not novel per se, as it is a straight implementation of classic PWM control [24].
However, our proposal generates the input signal from a touch sensor placed so that it

! Audio demo with percussive sound samples available at: https://soundcloud.com/
marcio-albano/triaume-test-samples/s—k7MKiggI4E2

2 Audio demo with synthesized waves available at: https://soundcloud.
com/marcio—albano/triaume-demo-sine-triangle-square-waves/
s—kzXDBilI6izr

3 Song available for listening at https://soundcloud.com/marcio-albano/
forrodoosc/s-Qty5RREnsph

4”Forr6 do OSC” music score available at https://ldrv.ms/b/s!AnEYggKX1_
PYkg4n8-k8xKsad4XXBA?e=Wc6mPG
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captures rhythms in the context of a handheld percussion. Henceforth, this process can
be interpreted as a rhythm-to-control conversion, which can be applied in several other
instruments.

5 Conclusion

This work presents an augmentation for the triangle, a handheld non-pitched percussion
instrument used in several regional Brazilian music genres. The augmentation proposal
uses minimalistic and low-cost hardware, comprised of a single capacitive touch sensor
attached to the triangle’s upper tip, which reduces its impact on using the traditional
techniques to play the triangle. On-stage configuration possibilities are obtained by us-
ing an external mobile device to fine-tune all parameters.

We use two mapping strategies. The first one uses the capacitive sensor as a key,
which can operate either on touch or on release, making it possible to add another in-
strumental layer to the acoustic one. The second one uses a low-pass filtering technique
to convert the on/off information to a continuous control, which allows reconfiguring
synthesis or digital effect parameters by performing rhythms with the thumb.

Although the on/off to continuous signal conversion was inspired by the use of the
triangle inside the Forré music context, it can be used in other musical instruments
and genres, e.g., using the gestures related to touching a drum’s membrane or side to
change its resonance. The main idea of the sensor is to convert rthythmic interactions
to a continuous value, that is, it uses gestures that are native to playing percussions.
Hence, the proposed augmentation is not only useful for Forré music itself, but also a
potential path to augment other percussive instruments in other genres.

In future work, in addition to the “Forré do OSC” song composed for this work
demonstration, we will seek to present the augmented instrument to contemporary mu-
sic bands so that it can be explored and further improved. Currently, this process is
strongly harmed by the COVID-19 crisis, which brings forward the problem of devel-
oping musical hardware in collaboration with musicians without physical social contact.

Moreover, further sound exploration can be made using the ripple present on the
low-pass filtered output signal. This approach could give the instrument more expres-
siveness when used with adequate mapping strategies.
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Abstract. Locus Diffuse is a networked multi-user instrument populated by a
simulated slime mold and four human players. Mimicking the biological behavior
of slime mold and establishing a virtual living network between player nodes, the
system sonifies interaction along these connections. Participants use a browser
based interface to play the multi-user instrument, and access an accompanying
stream for audio and visual output of the system. Player responses from various
play sessions are explored and reported in relation to sonic ecosystems as a prod-
uct of sound sources intersected with agent behavior, defining interaction through
personal connection to agents, an aural vs visual understanding of the system, and
various frames of focus employed by participants in regard to human/machine
and inter-human collaboration.

Keywords: agent-based musical systems, multi-user instruments, natural com-
puting, slime mold

1 Introduction

Musical play has acted as a vessel for a communal engagement, identity, exploration,
and expression throughout history [6]. While the style of play may vary from recital
of composed works to free improvisation (and every permutation in between/beyond),
a common thread is that emergent group playing dynamics are revealed through the
complex interactions between each player [2]. This aspect of musical collaboration is
a social ritual in which participants are afforded a medium of aural communication be-
yond the verbal. Players can be represented as nodes within a network of participants
that expresses interpersonal playing decisions, and the resulting sonic landscape can be
seen as an emergent form of this established network. Viewed in this way, collective
action results in a cumulative sound field that is the product of each node’s (player’s)
input. An interactive instrument/environment, named Locus Diffuse was developed to
investigate and facilitate these emergent participatory network structures within collab-
orative musical play for four players. This is mediated by an instrument in which users
can “play” a space through interaction both with its population of simulated agents
and with each other. Situated at the crossroads of sonic ecosystem design, agent-based
musical systems, multi-user instruments, and networked performance, Locus Diffuse
draws on a network of practices to produce a system that is used to interrogate the out-
come of their resulting collaborative human/machine interplay. The system was initially
planned for a full scale room implementation within the DisPerSion Lab at York Uni-
versity, however due to social distancing restrictions caused by the global COVID-19
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pandemic, the project was required to pivot to a distributed virtual performance space.
Players and spectators access a live audio/visual stream as a collective hub for generated
activity, while controlling their input within an additional browser window or mobile
device. During this time of relative isolation, the project’s aesthetic themes of connec-
tion and collaboration were heightened through this additional networking component,
facilitating the communal play of all participants.

The behavior of the system’s population of agents is modelled on networking struc-
tures found within the biological form of slime mold. Harnessing natural processes of
emergent form and community, these organisms have been demonstrated to have re-
peatable emergent behaviors of aversion and attraction to environmental stimuli. Most
notably their structure takes the form of thin physical networks between food sources,
and through implementing approximations of this behavior, Locus Diffuse generates
flowing and reactive networks of autonomous agents moving between player positions.
We argue that these organisms are well suited as a metaphorical frame that mirrors
the collaborative generative network-like structure found within musical performance,
and that mapping various interaction responses can result in compelling ecosystemic
behavior.

2 Related Works & Literature Review

2.1 Harnessing Biology - Artistic & Computational Implementations

Natural Computing studies the application of natural phenomena within ecological sys-
tems and biological structure to a multitude of computational tasks [18]. These imple-
mentations can come in the form of mimicry, approximation, and inspiration from struc-
tures found within natural systems. Slime mold, specifically Physarum polycephalum,
exhibits extraordinary behavior for an organism which contains no explicit sensory or-
gans, capable of tactile, chemical, and photoreceptive sensing. The body consists of a
single cell, but can produce many flexible space-searching tubules and can change their
thickness to allow for a greater flow of cytoplasm in order to move. The body attempts
to move in a direction towards food/positive stimulus or away from negative stimu-
lus [5]. The slime mold is able to then retract, reinforcing a minimal path between all
available food sources within even complex spatial layouts such as mazes [14]. Compu-
tational models of slime mold have resulted in creating logical gates, solving resource
heavy computation, and achieving primitive memory [1]. Artistic applications of slime
mold have been advancing in tandem with computational implementations. Miranda et
al. [12] constructed a sound synthesis project which allowed for recordings of voltage at
various locations through the electrical activity of a slime mold network across a series
of food nodes. This data was then used within a granular synthesis engine to generate
sonic events.

2.2 Sonic & Performance Ecosystems

Sonic ecosystems refer to interactive systems defined by the generation of a reactive au-
dio environment in which self observing behavior and participant input result in audible
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dynamic feedback [4]. Such systems explore the relationships and outcomes established
between human, machine, and ambient environment. A central question in the con-
text of ecosystemic design is the role of the human participation within an established
work, and what constitutes “interaction”. Some systems generate a sonic environment
purely mediated by an established machine/ambience relationship, while others find
room for human interaction to extend these interactions. Di Scipio [4] describes this
ability of system self observation as “a shift from creating wanted sounds via interac-
tive means, towards creating wanted interactions having audible traces”, and claims that
it is through these traces that compelling sonification can occur.

The original, in-person formulation of Locus Diffuse was initially planned to play
off of the self-observing vocal & ambient feedback found within the design of the
dispersion.eLabOrate project [9], a system exploring collaborative sounding within
a Deep Listening-inspired sonic meditation [15] context. Within Locus Diffuse, self-
observation occurs at the agent level. Each agent is only aware of its own state (vs a
sense of other’s or environmental current states) and acts according to its sensory input
from the environment. Environmental changes and subsequent sonification are a result
of the interplay between players and the system’s agents.

2.3 Multi-User Instruments & Networked Music

Intended to promote close relationships between multiple players and resulting play
techniques, multi-user instruments allow many participants to perform through a sin-
gular instrument. Designing for a multi-user instrument context requires explicit con-
sideration of the intricacies and collaborative experiential content which the instru-
ment/system needs to convey. Jorda [11] outlines key aspects of multi-user instruments
that facilitate shared collective control within a musical system. These properties in-
clude number of users, user roles, player interdependencies/hierarchies, and the flexi-
bility of each of these components.

Creation of mutual-influence via networked sound data has been explored by pio-
neering groups such as the League of Automated Music Composers and The Hub [8].
More recently, these networks have also been explored within the realm of telemat-
ics, employing the internet as a medium for musical collaboration [16]. Weinberg [21]
presents the concept of an Interconnected Musical Network (IMN), live performance
collectives in which player interdependencies result in dynamic social relationships and
reactive playing. Weinberg states a successful musician network would promote “inter-
personal connections by encouraging participants to respond and react to these evolving
musical behaviors in a social manner of mutual influence and response”, positioning the
performance of group-based music as a social ritual. Additionally, exploring a biologi-
cal metaphor of the established network, Weinberg [21] states: “Such a process-driven
environment, which responds to input from individuals in a reciprocal loop, can be
likened to a musical ‘ecosystem.’ In this metaphor, the network serves as a habitat that
supports its inhabitants (players) through a topology of interconnections and mutual re-
sponses which can, when successful, lead to new breeds of musical life forms...”. This
parallels the key ecosystemic theme of Locus Diffuse and points back towards the cul-
mination and amalgam of these disparate practices as viable in fostering a connected
musical collaborative space.

23



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

3 Artistic Intention & System Overview

Locus Diffuse introduces a simulated being that reacts to the movement of players,
permeating the environment as a traversable medium. Sonification of the system is
achieved when interacting with this mediating entity as well as through participant
movement in virtual space, and can therefore only exist/function through the symbi-
otic relationship of players to it and to each other. Control is not centralized to one
participant, nor surrendered to the simulated organism. This control facilitates the mu-
sical composition of space, sculpting a form which the simulated organism populates
spatially and aurally. This emergent structure and reactive behavior can be paralleled
within the participants of the social ritual of “musicking” [19], in which each player
has a sensory experience of the whole while also contributing to it. Participating within
the shared audio space means enacting this social ritual of musical play, thus the roles
and capabilities of players along with the function of environmental agents were estab-
lished such as to rely on all players. These inter-human and human-agent relationships
are critical to explore the resulting network structure. The simulation is contained within
Max, employing JS for directing agent positions and control data for grain sonification,
JWeb in Max is used for visual feedback in an HTML page, and audio synthesis control
patches additionally developed within Max.

3.1 Simulated Agents

Agent behaviour is modeled after the biological structures of Physarum polycephalum,
but does not represent an exact scientific model of the organism. Player positions are
represented as purple radial gradients within the simulation. Player positions act as
food deposits for the simulated agents, and movement results in variations of the en-
vironmental structure sensed by the collective simulated slime mold. The simulation is
informed by the research of Vogel et al. [20] and inspired by Jones [10], who outlines
the mechanics of Physarum polycephalum.

An initial population of 500 agents spawn in the centre of the simulated environ-
ment and are given a random starting vector. Each agent is equipped with two sensors
positioned at an angular offset of 45 degrees left and right, and a set distance ahead of
the agent. The simulated world is quite large (1000 pixels) in relation to the size of the
cellular bodies (2 pixels), necessitating sensors that have a far reach (default 350 pixels),
allowing them to “smell” food sources and trails from a reliable distance. As mentioned
in Jones [10], this large distance would normally be considered remote sensing sep-
arate from the body of an agent, however this distance also acts as the “overlapping
actin-myosin mesh of the plasmodium gel system”, allowing the cells to understand
their position relative to each other and to nutrient sources. Optimization of the agent
network is achieved through a decaying chemoattractant trail deposited and sensed by
each agent. Trails are deposited when an agent senses food or another trail, resulting in
deposits towards food. As trails diminish over time, an established network is strength-
ened when searching agents return from an unsuccessful search, or travel along the
stream, continually depositing additional trails. Agent sensors check for light values
representing chemoattractant strength, average the data collected, and then determine
the direction to face. Agents remember the last strongest “smell” they’ve sampled and
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choose what to do based on the current reading, always orienting towards the highest
value. Agents are in search of energy to keep moving and find more food. Each agent
mimics the cytoplasmic streaming behavior of a slime mold, and represents a theoreti-
cal main concentration node of this cytoplasm. Energy is a value held by each agent and
player attractant node, which maps to qualities of each granular sonification, movement,
and rotation speed. Losing energy will cause them to slow or enter a hibernation-like
state when approaching zero. Agents which gain energy again can be “revived” from
this hibernation state if passed over by a player. Simulated agents actively gain en-
ergy while upon a player, while passively losing energy during movement/wandering
between nodes. Players regain energy by being in close proximity to others. Agents
keep individual energy values as opposed to distributing energy, allowing for unique
sonifications based on the amount of energy one contains.
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Fig. 1. Human and machine interaction with resulting data flow to sonification

3.2 Sonification

Unique source material was used to ensure an identifiable timbre for each player. Play
sessions were done in two waves and audio sources were edited between waves for both
refinement of sonification aesthetics, and to gauge changes in play due to these varied
timbres. Wave 1 sources were textural in nature, using viscous drips, synth drones, run-
ning water, and a filtered conversation as audio material. Wave 2 sources were chosen
to result in crisp sonification - timbrally in line with clicking, dripping, droning, and
swarming noises. Sonification of a given audio grain was triggered by an instance of
an agent “eating” at a particular player location, when an agent takes energy from the
player’s representational chemoattractant. The sounding potential of a grain triggering
is randomized to a 1 in 500 chance upon an agent eating to avoid continuous audio
output from a single agent, while also mimicking variance in time needed to break
down and process energy from food sources (i.e. a second artistic liberty taken with the
model). Messages are sent from the logic JS running in a JWeb, routed to one of four
granular synthesis engines, corresponding to a different player. These include the en-
ergy value of the agent, and the player ID acting as their source of energy. The granular
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synthesis patches contain a Petra buffercloud object [13], allowing for accurate single-
grain firing (5-50ms long). Energy values are mapped to a pitch multiplier of the source
material and gain level. As energy values range from O - 100, values are scaled to an ap-
propriate pitch range multiplier between 0.5(£0.2) and 1.7(+£0.2), and gain ranging from
-30dB to 0dB. Granular synthesis output is then spatialized to the corresponding player
position. Player movement is sonified by high frequency sine tones. Unique frequencies
are assigned per player, then modulated based on movement speed, with slower move-
ments being modulated down (with higher gain), and faster movements modulated up
(with lower gain), which may produce a beating depending on relational position/speed
of multiple players. These tones are spatialized in a virtual binaural space using IR-
CAM’s Spat [3].

Fig. 2. Stream view of the simulated environment depicting State 4 (participant names censored)

3.3 Networked Interaction & Visualization

Accommodating different devices and network connections was essential in order for
public accessibility to players and audience. Control of player movement occurs in the
browser through a provided URL, and can be accessed with a browser or touch enabled
device. The interface contains a panel for each player consisting of identical controls,
including a centre square for position input, and a right-hand slider for vertical move-
ment. The left-hand boxes show spectroscope representations of current sonic activity
for each participant. Visual output of the system (Fig. 2) was hosted on a public live
stream. This situates the stream as a centralized audio and visual hub for the experience
of the instrument, and resulting sonic ecosystem.
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4 Survey

Play sessions were held in two waves as open calls on set dates, and public exhibitions
following the weekly electro-acoustic improvisation series DisPerSion Relation X. The
first wave of play sessions focused on a single behavior state of the agents, while the
second wave presented players with four varied states. Sessions lasted roughly 25 min-
utes (with some lasting up to 60 minutes). Following play, participants were asked to
complete an anonymous web form. As Wave 2 was centered around four different be-
havior states, the response form was updated to include questions on state comparisons.
Questions focused on perception of the system from two perspectives: relations with
other players and the resulting sonification. The questions for Wave 1 (W1) were pre-
sented as follows:

1. What was your sense of playing in this virtual environment?
2. What was your sense of connection to the others in the virtual space? (Other players
or agents)
3. How did you perceive your own “voice” while playing? (Location, timbre, relation
to environment and others)
4. How would you describe your ability (or lack of) to perform expressive musical
action?

Wave 2 (W2) introduced states which altered agent trail decay, sensory distance,
“death” threshold, birth odds, and agent energy decay. Players were not primed on the
behavior of each of these states. The transition between each state was announced to
prompt the players that they will be interacting with new behavior. States progressed
sequentially through 1-4, but could be revisited following the session. The experienced
states were:

— S1 - Solitary: Fast trail decay, low sensory distance, default death threshold, low
birth odds, and default agent energy decay
— S2 - Needy: Slow trail decay, low sensory distance, lower death threshold, high
birth odds, and very fast agent energy decay
— S3 - Lively: Fast trail decay, high sensory distance, default death threshold, high
birth odds, and slow agent energy decay
— S4 - Starving: Slow trail decay, high sensory distance, lower death threshold, low
birth odds, and very fast agent energy decay

The names provided before the description of each state were given by the first
author through personal interpretation of their behavior and were not told to players.
Questions from W1 were all asked again, including “For each state:” before a given
question. One additional question was asked:

— How would you describe the behaviours of each state? (changes in response, char-
acteristics, etc)

Answer lengths were not prompted to be short or long, allowing players to provide as
much detail as they wished. 10 player responses were recorded for both W1 and W2,
and a thematic analysis was conducted on this data. Most players had little or no prior
experience with participatory musical systems. A small amount had extensive prior
experience with improvisational musical play.
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5 Responses & Analysis

Participant responses outline a range of interpretations for Locus Diffuse, as various
natural metaphors were attributed to the audio and visuals. One participant noted “I
definitely had the sensation of being immersed in a medium — fluid. The dynamics of
the particles, of course, were responsible for evoking this sensation, but so were the
sounds and the way that they transformed”. While players were primed that the agent
behavior was emulative of slime mold, their natural metaphors for the agent behavior
tended towards more commonly encountered phenomena of the natural world. Natural
processes such as swarms of bugs, flowing rivers, and immersion within a fluid sub-
stance were noted as a reaction to both the aural and visual content of the simulation.
While similar sources were used as granular input across both waves, the sense of a
natural process was far from 1:1 with source audio, and rather was in reaction to both
timbre and agent behaviour. This points to the perception of an emergent sonic ecosys-
tem that is influenced both by variations of the sound source and by agent behavior.

Interaction with agents, guided by personal connection/narrative, was also a key
feature of participant responses. One player noted, “There was a certain appeal to do-
ing things like building "bridges’ between myself and other users, and seeing the cells
speed up and slow down made it feel like we were almost taking care of the cells in
a way”. This was exemplified within states S2 (Needy) and S4 (Starving) of Wave 2,
where accelerated agent energy decay and earlier death resulted in huddles of player po-
sitions protecting a core population of agents. Players attributed direct and/or implied
characteristics towards agent and environmental behavior throughout each of the states.
Players would alter the target of these characteristics, displaying that these changes
were felt on either an agent or environmental level. Environmental-related characteris-
tics tended to be a product of the visual aspects of the system, noting “busyness” and
“growth” of agents within S2 & S4 when trail decay was reduced. For agent behav-
ior characteristics, S1 (Solitary) was perceived as “independent”, resulting in localized
areas of attraction with distant agents acting indifferent to the presence of energy. One
response attributed ‘interest’ as a quality the agents possessed, stating that “agents seem
to be highly invested in the actions of players when they are sharing energy, but seem to
actively avoid players who are not working together to share energy”. One player noted
that these states “rewarded stillness”, where one’s interaction felt more impactful to the
sonification by waiting and allowing the agents to move towards and through them.

Audio and visual cohesion of the system was found to be necessary for players to
internalize a complete understanding of the resulting agent behaviors. An interesting
trend is shown in some player responses to seemingly lean towards a visual character-
ization of the system state vs an aural one. This can be seen in responses comparing
S1 and S3 (Lively). Reports on each states sonic activity were contrasting, noting S1
as reserved and stable, but S3 as busy or chaotic. Although perceived as sonically con-
trasting, most participants noted S1 and S3 being similar due to visual qualities of the
simulation, mainly trail decay rate. Similar reports occurred between S2 and S4 due to
their low trail decay rate. This visual bias may also be a product of the relatively low
familiarity of participants with musical systems/play experience.

Varied experiences of connectedness were reported: a lack of connection, connec-
tion mainly with the simulated agents, and connection to the meditative qualities of
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communal movement. Reports of a lack of connection were attributed to a desire to have
dialogue with fellow players (voice/text) in order to coordinate, or again due to a focus
upon the visuals, noting “Being able to see where other players were going and patterns
they were following made the connection much strong across all states”. The second
focus is discussed above (“interaction with agents”). The third focus was on immersion
in the system and the sonification of player movements, which divided into two groups.
The first noted a distinct gravitation to the mediating agent system and its behaviours,
with one participant stating “I could feel each of there positions in a unique way. It
was as if they were taking up space in a room”. The second focused on inter-human
sounding while immersed in the mediating virtual space, with one participant stating,
“I found myself being more consciously aware of the other players’ positions/motions,
and adjusted my own motions in relation to theirs”.

6 Conclusions & Future Work

Blending aspects of sonic ecosystems, agent-based musical systems, multi-user instru-
ments, and networked performance to establish a communal musical play context, Lo-
cus Diffuse depicts these disparate fields of study as complimentary in their nature to
establish compelling emergent behavior through various levels of interaction, sounding,
group structure, and process. Employing natural computing for the mimicry of biolog-
ical systems allows for flexible and dynamic collaborative musical agents by speeding
up natural processes to allow them to be used in real-time musical computation tasks.
The provided system overview allows for detailed understanding of agent mechanics
and human/machine interplay resulting in sonification. Play sessions with Locus Dif-
fuse resulted in four key observations from participant responses:

— The perception of a sonic ecosystem was tied to variation in sound sources inter-
sected with agent behavior.

— Narrative-based personal connection between players and agents mediated interac-
tion characteristics.

— There was a bias towards a visual understanding of the system vs an aural one.

— The “locus” of experiences of connection were more varied, ranging from a lack of
systemic connection, focus on inter-human collaboration, to human-agent collabo-
rative sounding.

Each of these outcomes is a product of the interaction between system behavior, player
action, and aural & visual aesthetic decisions, constituting various networks at play
between the project’s amalgam of practices, communal musical goals, and telematic
structure.

In a post social distancing time, an in-person room scale version of the system will
be created in order to explore the translation of the current network-based musical in-
strument design back into the originally intended space. Translating to this physical
space, perceptions related to embodied movement as a control source can be explored
within the established agent-based sonic ecosystem. Further research into potential nar-
rative outcomes of inter-human and human-agent-based collaboration may yield inter-
esting results within sonic ecosystems. Sessions aimed at varied levels of musical expe-
rience may reveal interesting trends related to aural vs. visual attention, and attention to
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inter-human or human-agent interactions. Additional telematic sessions with reduced
visual feedback may also shed light on how much a purely sound-based system can
express these ecosystemic interactions.
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Abstract. The karlax is a gestural controller developed around 2010. Since its
inception, it arose substantial interest among composers and continues to be com-
monly used in solo and group performances. One of the reasons for its longevity
is its great adaptability especially in interaction with acoustic instruments. This
article analyses six chamber music pieces for karlax and acoustic instruments by
comparing the sound and visual results and the writing process (scores, patches,
and mapping). We discuss different composition strategies through the use of in-
teraction metaphors from the computer music literature. These metaphors prove
to be powerful analysis tools that allow describing the use of a digital music in-
strument (DMI), such as the karlax, in a chamber music context.

Keywords: Mixed pieces, Computer Music, Digital Music Instruments (DMI),
Electronic Chamber Music, Input Devices, Mapping

1 Introduction

Though several hundred interfaces for musical expression have been developed and
described in a variety of venues, most notably in the last two decades at the International
Conference on New interfaces for Musical Expression (NIME)?, relatively few articles
discuss how these interfaces ares used in actual musical contexts, for instance [1], [2],
[3] and [4]. Indeed, the use of DMIs is not often discussed from the perspective of
artistic and musical composition. In other words, the "M” in NIME: why don’t we talk
more about music performance with musical interfaces, beyond sound control? In part,
this is the consequence that most of the interfaces described in the literature have short
life spans and/or are mainly used by their designers [5]. In this sense, the karlax offers a
particularly rich subject of study with an existence of more than ten years, a community
of regular users from different musical cultures and several significant creations, notably
with acoustical instruments, incorporating some form of music notation.

The karlax is an input device that combines several sensors: continuous keys, ve-
locity pistons, axis, switches, and three axes of accelerometers and gyroscopes (Fig. 1)
4 ”Its ability to detect subtle as well as larger gestures, continuous as well as event-
based control, its low latency and high bandwidth, its reliability and portability” has

3 www.nime.org
4 www.dafact.com
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been praised [6]. Like many musical interfaces that output sensor data but which do
not have a pre-defined sound, the karlax is defined by its control characteristics, i.e., its
gestural identity instead of a given sonic identity. This opens up unlimited musical pos-
sibilities but requires the composer to describe the sounds controlled and the mapping
between sensor data and sound generation to be used in each context. A digital musi-
cal instrument (DMI) is composed of the group: control interface + mapping + sound
generation [7].

rght thumb sy —————

et thumb tray
pommeau
continuous key

onjoff

UsB
charger comection

Fig. 1. Front and rear views of the karlax (www.dafact.com)

In this study, we analyze a corpus of six pieces for karlax and acoustic instruments
from audio and video recordings, scores, Max/MSP patches, articles, presets, etc. We
have identified three compositional models that allow us to define the main areas of
inspiration for each of the pieces. In a second step, we will discuss excerpts in the corpus
by detailing the action of the karlax and its interaction with the acoustic instruments
thanks to interaction metaphors from Computer Music.

2  Objectives

The objectives of this article are:

1. Study of six pieces for karlax and acoustic instrument(s) including analysis of
sound synthesis, mapping, gestures, and scores.

2. Among these pieces describe the “role” of the karlax by identifying compositional
models.

3. Analyse the use of the karlax and its interaction with acoustic instruments in ex-
cerpts of these pieces thanks to Computer Music metaphors.
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3 Corpus of Pieces

We have selected 6 pieces written between 2013 and 2018 that combine the karlax
controller with one or two acoustic instruments among a flute, a violin, and a cello.
Five of the six pieces of the corpus have been commissioned by the Fabrigue Nomade
ensemble and have been performed by it. This ensemble is an “electronic chamber mu-
sic ensemble that wishes to rediscover the gestures and listening of classical chamber
music™. In this regard, “each musician is independent and has total control over their
acoustic or electronic instrument” (each instrumentalist has their own laptop and their
own sound broadcasting system). This means that acoustic instruments performers trig-
ger their own electronic part (most of the time real-time processing) thanks to a midi
pedal and that the karlax cannot process in real-time the acoustic sound of an instru-
mentalist. This is not the case for the sixth piece where the karlax transforms the sound
of the violin in real-time.

A Fogg by Lorenzo Bianchi for violin, cello and karlax, 2013 (performed by Fabrique
Nomade ensemble)
B Frottement, Bourdon, Craquement by Francis Faber for cello, karlax and electronic,
2013 (performed by Fabrique Nomade ensemble)
C Le Patch Bien Tempéré Il by Tom Mays, for flute, karlax and real time electonic,
2013 (performed by Fabrigue Nomade ensemble)
D Ripples Never Come Back by Michele Tadini for violin, cello and karlax, 2013
(performed by Fabrique Nomade ensemble)
E Discontinuous Devices "In-between” by Michele Tadini for cello and karlax, 2015
(performed by Fabrique Nomade ensemble)
F Le Violon, I’ Oecillet et le Bambou by Raphaél-Tristan Jouaville, for violin and kar-
lax, 2018

4 Composition models

Among these pieces, we have identified three compositional models that represent three
main sources of inspiration for the composers: model based on acoustic sounds, model
based on electronic sounds and karlax as model. These allow describing the main “role”
of this controller in relation to the other instruments.

Model based on acoustic instruments sounds

For several pieces in the corpus, the acoustic sound of the instrument(s) with
which the karlax plays is used as the basic composition material. For example, in the
piece Fogg (A), the sound synthesis of the karlax is realized through an additive syn-
thesis from the spectral analysis of several violin pizzicati with different “preparations”
(addition of objects like pegs attached to the string). The karlax triggers and controls
processes related to the spectral content of pizzicato sounds by pressing continuous
keys (control of the spectral envelope) (Fig. 2).

Other examples are pieces where the karlax plays sounds very close to the sounds
played by the instrument(s) it interacts with. In this way, the acoustic instrument is

5> www.fabriquenomade.com
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“augmented” by the action of the karlax. For example, in the third part of Discontinuous
Devices (E), the karlax activates flautando and harmonics cello samples by pressing the
continuous keys. Shorter samples of the same type are also triggered by the pistons. This
forms a harmonic environment for the cello, which performs more percussive figures
like jettatti and glissandi that let the natural harmonics of the open strings resonate. With
the same idea, in Jouaville’s piece (F), the karlax plays a physical model of a string by
activating the pistons in a consecutive way whose pitches are previously set up (String
Studio module). In most of the piece, the karlax highlights and develops the melodic
contour of the violin and/or creates a harmonic accompaniment (Fig. 3).
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Fig.2. ”Shaping” of the spectral envelope with karlax continuous keys in Fogg by Lorenzo
Bianchi (mes. 68-69, karlax part) (with the permission of the composer). Each staff line rep-
resents the activation of a continuous key that will control the volume of a group of oscillators.
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Fig. 3. Results of pitches played by the karlax pistons with the corresponding fingerings in Le
Violon, I’ Oceillet et le Bambou, by Raphaél-Tristan Jouaville (mes. 7) (with the permission of the
composer). See video from 00:30 to 00:32 www.youtube.com/watch?v=IrCmiwwFSUs

Model based on electronic sounds

This type of composition model is the most common in the selected pieces. In this
category are represented the treatments and manipulations associated with electronic
music such as filtering, delay, granular synthesis, additive synthesis, ring modulation,
arpeggiators, freeze, etc. Also, this control interface is often associated with the process-
ing of electronic synthesis. By assigning certain parameters of the sound synthesis to
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different sensors, the karlax can “drive” processes in real-time and bring an expressive
dimension to the transformations. In this model, the sound of the karlax is perceived as
independent from the acoustic sound of the instruments. For example, in the piece Le
Patch bien tempéré III (C), the composer focuses on complementary electronic tech-
niques such as harmonizers, delays, and “paf” synthesis based on voice formants . In
this piece, the input device activates different synthetic voices and modifies parameters.
In general, the accelerometer data corresponding to the forward, backward movements
are correlated with dynamics (brightness and intensity) and the left-right movements
are correlated with pitch (glissandi) while the central axis applies a speed tremolo [8].
In the score are noted the part of the flute, the karlax movements laid out on four staves,
and the acoustic results (Harmonizers and Synthesis staves) (Fig. 4).
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Fig. 4. General score of Le Patch bien tempéré III by Tom Mays (mes.6) (with the permis-
sion of the composer). The karlax part combines -movements (“Gesture” staff with circle sym-
bols) which controls intensity, brightness, and pitch-bend of the sound synthesis, -rotation of
the axis (dotted lines) which control a speed tremollo and -continuous keys depression (“Right
Hand” and “Left Hand” staves with thick lines) which activates “paf” synthesis voices. The
numbers at the top of the score represent the time in seconds. See video from 01:44 to 02:00
https://vimeo.com/8046464 1

® Phase Aligned Formant developed by Miller Puckette in 1995
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Karlax as model

The design of the karlax can also inspire the composition and constitute a model
in itself. Indeed, this controller is conceived by being inspired by the keys system of
wind and keyboard instruments (pistons and continuous keys) enriched with an axis
(with bends) and movement sensors (accelerometer and gyroscope). The instrumental
aspect of the karlax is developed among others in the introduction of the Faber’s piece
(B). Indeed, the instrumentalist performs a “call” thanks to the pistons produced by
short harmonic synthetic sounds. The play of the karlax can be compared to the play of
pistons of a trumpet (Fig. 5). Also, the possibilities of the karlax can inspire the "tra-
jectory” of the piece. For instance, Discontinuous Devices (E) starts with an extensive
use of the pistons and then in the second section the karlax triggers and controls long
sequences through the accelerometer and gyroscope data, making the karlax gestures
more and more expressive.
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Fig. 5. “Call” played by the Karlax pistons in Frottement, Bourdon, Craquement (mes. 1-2) (with
the composer permission). See video from 00:00 to 00:04 https://vimeo.com/118148219

S Interaction Metaphors from Computer Music

In this part, we analyze excerpts of the corpus pieces thanks to metaphors from Com-
puter Music. We have selected five metaphors from three articles: [9], [10], [11], for
their relevance to describe the action of a gestural controller such as the karlax (particu-
larly in interaction with acoustic instruments) and for their capacity to give an overview
of compositional strategies.

“Shaping” [Caramiaux et al., 2014]

Shaping “‘refers to scenarios where performers control sound morphologies by
“tracing” in the air those salient sound features they desire to control”[9]. This metaphor
is described as the “transfer of variations into a gestural morphology” and as synchro-
nization of sound with movement. It is widely used in the pieces thanks to Karlax mo-
tion sensors but also with continuous keys. For example, in (C), the karlax imitates the
distortions of the flute sound (created by harmonizers, flatterzunge, etc.) by “shaping”
the “paf” synthesis. At the same time, the ancillary gestures of the flutist seem to im-
itate the gestures of the controller (Fig. 4). With a more reduced gestural expression,
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the continuous key activation allows the karlax performer in (A) to “shape” the spectral
envelope in a differentiated way to provide a harmonic accompaniment to the violin and
the cello (Fig. 2).

“Catch and Throw” [Wessel & Wright, 2002]

This strategy of interaction “involves the notion of selectively trapping musical
phrases from an ongoing performance, transforming them in some way, and then send-
ing these transformed materials back into the performance”[10]. This way of interac-
tion, which could be defined as delayed real-time processing, is exploited in improvisa-
tional situations by Tom Mays in the early 2010’s, where the direct sound of the acoustic
instrument is captured, transformed by the karlax and broadcast in real-time’. This type
of interaction is also employed at the end of Jouaville’s piece (G) where the acous-
tic sound of the violin is processed by resonator, delay, and pitch shift modules (GRM
Tools) whose parameter nodes are controlled by the karlax movements. This brings a
sonic halo to the violin®.

“Fishing” [Caramiaux et al., 2014]

This metaphor is related to the learning stage in gesture recognition. When a ges-
ture is recognized by the dedicated program, a sound will be “fished” out to be played.
One can compare this scenario of interactions with certain compositional strategies. For
example, at the beginning of (A), several violin and cello actions with obvious gestural
characteristics such as jettato, glissandi, strokes on the body of the instrument seem
to be “recognized” by the karlax, which reacts by imitating gestures, triggering and
transforming nearby sounds’.

Musical tasks [Wanderley & Orio, 2002]

In the same idea as the composition model based on instrumental playing pre-
sented above (see Karlax as model), the article [11] proposes two levels of metaphors:
Musical Instrument Manipulation Metaphor and Other Metaphor. In the first category
are listed the interactions metaphors that refer to traditional instrumental playing (iso-
lated notes, basic musical gestures like glissandi, vibrato, musical phrases, rhythmic
playing, etc.) that appear for example in Faber’s piece with the “call” (Fig. 5). In the
second category, the authors evoke the actions of triggering of sequences but also their
organization in time: synchronization, envelope control, continuous modulation fea-
tures, etc.

“Space” [Wessel & Wright, 2002]
The purpose of using a control interface like karlax in this type of strategy is to
“suggest musically interesting trajectories for gesture [10]”. Moreover, the article em-
phasizes the importance of proximity and timbre in the perception of these trajectories.

7 In this video, the karlax controls the transformations of the acoustic sound of a Sheng, a mouth-
blown free reed instrument: https://www.youtube.com/watch?v=fg9Tgbl4gTM

8 See video from 05:43 to 06:42 https://www.youtube.com/watch?v=IrCmiwwFSUs

? See video from 00:00 to 01:10 https://vimeo.com/6704907 1

37



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

In addition, various strategies to suggest movements and trajectories are employed by
the composers of the corpus. For example, in Ripples Never Come Back (D), the com-
poser evokes a distancing through repeated sequences where the violin and cello instru-
ments begin a quasi homorhythmic figure which is “taken up” by the electronic part
performed by the karlax in the form of arpeggios towards the high register. The karlax
controls a flow of notes produced by a subtractive synthesis: the axis controls the pitch
of the arpeggio, the continuous keys control parameters like volume, filtering or speed
while the inclination combined with a key activation controls the envelope (Fig. 6).
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Fig. 6. Sequence that evokes a distancing in Ripples Never Come Back by Michele Tadini (mes.
32) (with the composer permission). See video from 00:48 to 01:00 https://vimeo.com/72995021
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6 Discussion

The use of compositional models and Computer Music metaphors provide a framework
and powerful analytical tools to apprehend pieces that appear at first sight very complex.
It allows to categorize certain roles of the karlax in this precise context, with a small
number of acoustic instruments, and allows to discuss situations.

For example, the piece (A) seemed to us to belong to both the first and the second
composition model, depending on whether one considers the process of composition or
the sound result. Indeed, the process of additive synthesis and the fact that the “target”
sounds are prepared (with the addition of pegs) make the sound synthesis played by
the karlax particularly distant from the acoustic sound of the violin. From a perceptual
perspective, we would then need to determine whether or not the timbre of the sounds
played by the karlax “blends” with the sound of the instrument and determine what
allows us to assert this. For the other examples given for the first model: (E) and (F),
we can use the terminology of “timbral augmentation” as presented in [12].

The selected metaphors are thought in real-time interactions context. While the
composition process necessarily evolving in a delayed time, we have seen that these
metaphors are proper to comment on typical situations of the pieces of the corpus.
Firstly, because they offer situations of real-time transformations and secondly because
the composition strategies in terms of dramaturgy can be compared to situations of im-
provisations. Moreover, the setup chosen by the Fabrique Nomade ensemble influences
these strategies. As the instrumentalists are independent and trigger more or less random
processes (for example delays), the composer tends to opt for “encompassing” strate-
gies, highly describable by the metaphors [13]. On the other hand, these metaphors are
limited to comment precisely on temporal and rhythmic aspects as specified in the arti-
cle [11]. In addition, metaphors that qualify the action of a controller such as Shaping,
or Musical Tasks facilitate the interaction with the instrumentalist(s) and the “reading”
of the piece by the spectator/listener as they help to identify acoustically and gesturally
the part played by the karlax.

Another important aspect to qualify the action of the karlax is its notation. De-
pending on the project of each piece, composers adopt a prescriptive (oriented on the
action of the karlax player) and/or descriptive method of notation (which reports the
acoustic result)[14]. As a reference point, the composers of the corpus use the basics
of karlax notation presented in the article [6]. We can mention however the more prag-
matic approach described in the Jouaville’s piece (G) which consists in assigning events
in order of appearance to a simple range of fingerings and allows to visualize the pitches
played by the karlax and movements on a single staff (Fig. 3). Also, it is particularly
interesting to relate the approach of the composer Andrew Stewart notably in his piece
Ritual (2015) for karlax solo, based among others on gestures categorization and a spa-
tial representation of space in the form of a grid [15]. In general, composers add rarely
information related to mapping and sound synthesis, which would allow performers to
further appropriate the karlax instrument. Simultaneously, the notation must be practi-
cal and represent the composer’s intention in a precise and concise way. As such, an
indication in the score of the metaphorical context, as presented above, would provide
valuable information about the way(s) the karlax is played and how it interacts with
other instrument(s).
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7 Conclusions

In this article we presented an analysis of six pieces for karlax and acoustic instruments.
Three models of compositions have been identified and five metaphors from Computer
Music have been proposed to characterize typical musical situations. To go further, it
seems particularly interesting to deepen the analysis of these pieces by providing a de-
tailed description of their conception and by comparing them both in terms of sound
synthesis, mapping, gestures, notation, and interactions. In addition, it would be inter-
esting to compare the use of the karlax with other DMIs like T-Stick in the same type
chamber music context.

Acknowledgments. The authors would like to warmly thank Rémi Dury, Francis Faber,
Tom Mays, Andrew Stewart, Michele Tadini, Lorenzo Bianchi, Raphaél-Tristan Jouaville
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Abstract. In this study, we propose a method for generating 3D skeleton motions
of a double bass player from musical score information using a 2-layer LSTM
network. Since there is no suitable dataset for this study, we have created a new
motion dataset with actual double bass performance. The contribution of this pa-
per is to show the effect of combining bowing and fingering information in the
generation of performance motion, and to examine the effective model structure
in performance generation. Both objective and subjective evaluations showed that
the accuracy of generating performance motion for double bass can be improved
using two types of additional information (bowing, fingering information) and
improved by constructing a model that takes into account bowing and fingering.

Keywords: LSTM network, Performance motion generation, 3D model, Double
bass

1 Introduction

Double bass plays an important role as the foundation in various forms of ensemble
music such as orchestral music, chamber music, wind music, and jazz. In addition, the
double bass plays a solo role while accompanied by the piano or orchestra. In the case
of the bowed stringed instrument to which the contrabass belongs, there is so much
visual information that the timing of the sound can be shared among the players by the
motion of the right arm, and the pitch can be estimated by the shifting and fingering of
the left hand.

In an actual ensemble performance, visual information is an important element for
conveying performance timing and specific musical expressions to other players and
for facilitating ensemble performance [1]. In particular, visual information is consid-
ered to be highly important in situations where many people are playing together in an
ensemble, such as in an orchestra or wind band.

In spite of the fact that visual information is one of the most important elements
in playing music as described above, among the major study fields of music infor-
mation processing, the studies on automatic performance generation (i.e. performance
rendering) mainly focus on performance sounds, and only a few studies focus on visual
information of performances.

Therefore, in this study, we aim to generate performance motion for the double bass.
There are two major technical issues: the generation of natural playing motion and the
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naturalness of the 3D model appearance and rendering accuracy. In this study, we first
focus on the former, which is the more essential issue.

There have been some studies on automatic performance generation focusing on
visual information, but they have targeted piano [2] and violin [3, 4], and generated per-
formance motion using actual performance sounds or MIDI as input data. In the case
of a bowed stringed instrument, it is considered that it is difficult to generate the perfor-
mance motion such as bowing and fingering from the pitch information because motion
is not uniquely determined from the pitch information. In order to solve this problem,
we propose a method to generate performance motion using the musical score informa-
tion that includes not only pitch information, but also bowing and fingering information
that greatly affects performance motion. Some methods have been proposed for auto-
matically estimating fingering from musical score [5], and a method combining these
studies would be promising, but in this study, we suppose these additional information
are added manually.

Since there is no suitable dataset for this study, it is necessary to construct a dataset
of musical scores and 3D motions. In previous studies, joint points extracted by using
body tracking technology of video data were used as motion information [2—4]. This
approach is also superior in that it does not interfere with the playing motion. However,
in this study, which targets a large instrument such as a double bass, it is considered
difficult to obtain accurate performance motion using this technique because part of
the performer is hidden by the instrument. Therefore, we collect motion data using the
inertial motion capturing device.

In this study, we adopted LSTM (Long Short Term Memory) network as a model
for the conversion between musical score data and motion data. In particular, we verify
the effect of using additional information (bowing and fingering information) as input
data by comparing the accuracy of the generated motion only from pitch information
and with additional information. Furthermore, we design a series model that learns
the right arm motion from the bowing information and the left arm motion from the
fingering information independently, and verify the effect of changing the structure of
the model.

2 Related works

Li et al. [2] proposed a method to generate a pianist’s 2D motion from MIDI sound
sources of a piano performance. They used a Convolutional Neural Network (CNN) to
extract the stream of the piano performance and the features of the beat structure, and
used these as input data to the 2-layer LSTM network, and used the 2D performance
motion from a fixed position as output data. In the subjective experiment, no significant
difference was found between the human motion and the generated motion in 75% of
the songs, indicating that the system does not generate extremely unnatural motion.

Liu et al. [3] proposed a method for generating violinist’s performance motion from
actual performance sounds. In this method, a model for predicting the bowing of the
right arm and a model for predicting the expressive motions of the whole body were
constructed from the Mel-spectrogram' obtained by performing STFT (Short Time

! Spectrogram in the Mel scale, a perceptual measure of pitch in human hearing.
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Fourier Transform) on the input sound source. And a model for predicting the posi-
tion, fingering, and strings of the left arm from the data obtained by pitch detection is
constructed independently. In addition, a model that predicts the position of the left arm,
fingering, and strings based on the data obtained from pitch detection was constructed
independently, thereby realizing the generation of violinist’s full-body performance mo-
tions.

3 Proposed method

Our model is based on a previous study by Li et al. [2]. The difference between our
model and the previous study is that the output data is not 2-dimensional but 3-dimensional,
and the input is not derived from MIDI but from score information, which is a sequence
of symbols. We need to consider a model that addresses these differences.

We construct a 2-layer LSTM network, and use MAE (Mean Absolute Error) as
the loss function and Adam [6] as the optimize function. The output vectors of the
LSTM network are fed to all the coupling layers to obtain the positional and rotational
information of each joint point in each frame in 6 dimensions.

We also attempt to apply the framework constructed by Liu et al. [3]which consists
of three models: a bowing model for the right arm, a position model for the left arm,
and a representation model for the upper body. In this study, since we are trying to gen-
erate performance motion using manually additional information (bowing, fingering)
rather than performance sound data, we can treat these information as more accurate
and reliable than that obtained by estimation.

Extract the sequence of pitch, bowing, and position from the musical score informa-
tion as shown in the Fig. 1 into a format that can be input to the LSTM network, each
with the same period. As a result, the pitch sequence is a 30-dimensional sequence
consisting of {E0, F0,..., A3}, the bowing sequence is a 2-dimensional sequence
consisting of {down-bow, up-bow}, and the position sequence representing fingering
information is a 12-dimensional sequence consisting of {0,1,...,11}.

The three sequences extracted from the above score information are used as input
data, and the sequence representing body motions are used as output data to construct a
model. The goal is to verify the significance of each data and to design a model that is
suitable for learning. By comparing the accuracy of the generated performance motion
by the designed models, we can verify whether the bowing and position information
used as additional information are significant in improving the accuracy of the generated
performance motion.

down-bow up-bow
position m Ry oy n
number 0 0 0 0 0

Fig. 1: Sample of musical score
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[ input [ output
Modell pitch(30-d) upper body(90-d)
Model2 bowing+position+pitch(44-d) upper body(90-d)
Model3|bowing(2-d), position(12-d), pitch(30-d)|right arm(24-d), left arm(24-d), other(42-d)

Table 1: Structure of the three models

The structure of the three models we designed is summarized in the Table 1.

4 Experiment

4.1 Dataset

We use ten pieces from the collection of exercises “Franz Simandl / 30 Etudes for the
Double Bass” from No.1 to No.10 for the training data, and three pieces from No.11 to
No.13 for the test data. The total time to play these 13 pieces at the tempo specified in
the score is about 30 minutes.

Motion data We use an inertial motion capture PERCEPTION NEURON made by
NOITOM to construct a dataset of the performance motion of one male double bass
player. The bvh file is a motion capture data file format proposed by Biovision, and
consists of two parts: a hierarchy part describing the tree structure of each joint point,
and a motion part describing the motion data. In this study, the hierarchy part was
defined as the 15 joint points of the upper body with the hip as the parent node. And
since the motion part describes the position information and rotation information of
each of the 15 joint points, it is represented by a 90-dimensional sequence. In this
dataset, the coordinates of the parent node are set to the origin.

Since the experiment was intended to be performed at the tempo dictated by the
musical score, we recorded the music performance played to a metronome. The frame
rate was set to 30 fps in accordance with previous research [4]. Since the accelerome-
ters at each joint point may deviate from their default positions due to motion during
performance, calibration (correction of deviations in sensor position information) was
performed after each etude was recorded.

Musical score data The musical score data was authorized for the target etudes in
MusicXML format [7] using the score authoring software MuseScore. Since this study
does not target the generation of expressive motion, we exclude tempo changes, vol-
ume marks, and detailed articulation instructions such as tenuto and staccato from the
authoring.

In the original score, there is no bowing and fingering information for all notes, so
we added symbols as bowing information and position numbers as fingering informa-
tion, as shown in the Fig. 1. The position number in this case is not the actual position
where the string is pressed, but the position of the index finger when pressing the string,
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and is defined as position number(= {0, 1, ---,10, 11}), starting with the lowest pitch
position.

Extract a 30-dimensional pitch sequence, a 2-dimensional bowing sequence, and
a 12-dimensional position sequence for every etude in order to get the pitch, bowing,
and position information from the xml data into a format that can be input to LSTM
network. In this process, each information was extracted at 30 fps to match the frame
rate of the motion data.

4.2 Objective evaluation

For objective evaluation, we compare the generated data with correct data (motion data
collected under the same conditions as when the data set was constructed), using the
following two criteria.

1. Average of the difference of coordinates at each joint point in each frame

2. Average of the ratio of the change between adjacent frame at each joint point

In the criterion 1, accuracy is verified by the difference of the amount of motion
of all joint points, so the smaller the value, the higher the accuracy. The criterion 2
takes into account the problem that the only evaluation based on the criterion 1 is not
sufficient because of the not so small difference in the amount of motion among joints.
The criterion 2 verifies the accuracy by the ratio, so the closer the value is to 1, the
higher the accuracy.

The results for the criterion 1 are shown in Fig. 2(a), and the results for the criterion
2 are shown in Fig. 2(b). From these two figures, it can be seen that the order of accuracy
is Modell < Model2 < Model3.

4.3 Subjective evaluation

The subjective evaluation is based on the naturalness of the performance motion. In
order to make this evaluation, it is necessary to have a person who can concretely imag-
ine the performance motions of the player from the score information, so the subjects
of the evaluation experiment were limited to double bass players. After checking the
score, the subjects watched a movie of the generated motion data played on Blender. In
this evaluation experiment, the order of playback was randomized. A total of 16 dou-
ble bass players, 8 males and 8 females in their early 20s, evaluated the naturalness
in four levels: “1: unnatural”, “2: somewhat unnatural”, “3: somewhat natural” and “4:
natural”.

From Fig. 2(c),which show the results of subjective evaluation using a box-and-
whisker diagram, it can be seen that the order of accuracy is Modell < Model2 <
Model3. This is consistent with the result of the objective evaluation.

5 Conclusion

In this study, we proposed a method for generating performance motions of a double
bass, for which it is difficult to predict performance motions from audio signals, by us-
ing musical score information (pitch, bowing, and fingering) as input data. As a result
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Fig. 2: Results of evaluation

of the experiments, it was demonstrated that there was a positive effect of providing ad-
ditional information (bowing and fingering), and that a higher effect could be obtained
by learning the right arm and the left arm independently from the bowing and fingering
information. As a future task, the generation of expressive performance motion is con-
sidered. In addition, the generation of realistic performance motions using 3D human
models will be useful for performance training for beginners.
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Abstract. We present an empirical study on embedding the lyrics of a song into
a fixed-dimensional feature for the purpose of music tagging. Five methods of
computing token-level and four methods of computing document-level repre-
sentations are trained on an industrial-scale dataset of tens of millions of songs.
We compare simple averaging of pretrained embeddings to modern recurrent and
attention-based neural architectures. Evaluating on a wide range of tagging tasks
such as genre classification, explicit content identification and era detection, we
find that averaging word embeddings outperform more complex architectures in
many downstream metrics.

Keywords: lyrics, word2vec, doc2vec, music tagging

1 Introduction

Song lyrics have been shown to be effective predictors of emotion [31], and can be
indicative of genre [25, 3,32, 15, 16, 14, 13], mood [7, 32, 6, 8, 11, 2], music exploration
[29], song structure analysis [28] and other musical facets such as quality and release
date [22, 19, 3]. This makes them good candidate features for automatic music tagging
(assigning labels like pop, chill to songs).

In the literature Hu and Downie [7] use collections of n-gram word counts (along
with audio) for classifying mood. Mayer et al. [14] classify genre via rhyme analysis of
lyrics, and Van Zaanen and Kanters [26] re-weight the word counts using TF-IDF (see
2.2) to classify musical moods. Text in these studies is often represented in Bag of Words
format [7, 14, 15], where a vocabulary is built from a corpus and a song is represented as
counts of the corpus words [5]. To obtain a usable vocabulary size, words are typically
removed from the corpus if they appeared too often (stopwords such as the, a) or not
often enough (bespoke vocabulary and misspellings).

Bag of Words is a useful intuitive document representation, but does not account for
the fact that some words may have a low count in a document, yet still be considered
interesting from a corpus perspective (for example, the word algorithm in a corpus of
agricultural documents). Term Frequency Inverse Document Frequency (TF-IDF) [9]
accounts for this by multiplying Bag of Words by a factor representing how common a
word is in a corpus, and has also been explored in the music tagging context [26].

The methods above have some clear drawbacks. First, no semantic meaning is pre-
served or inferred between the individual words, meaning for example the model shares
no information between words such as love and adore. Second, the feature vectors can
also easily become large and sparse (due to large vocabularies), making their use in
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machine learning models unwieldy. Word2vec [17] mitigates both of these issues by
learning dense representations from a corpus, i.e. each word is represented as a point
in a low-dimensional space in which semantically similar words are close. The training
objective in this model is to predict either a missing word given the context (Contin-
uous Bag of Words) or vice-versa (Skipgram). Word2vec has been adopted in a wide
range of NLP tasks, including machine translation [24], sentiment analysis [33], and
text generation [1]; and in the Music Information Retrieval (MIR) domain has success-
fully been applied to explicit song detection [20], genre classification [10] and music
recommendation [27].

Although word order is considered in word2vec training, the algorithm does not
provide a method for representing a document - something which is often needed for
downstream tasks [3,22]. One solution is to take summary statistics of the constituent
word embeddings (i.e. simple averaging [27]). Another approach from the NLP liter-
ature is Doc2Vec [12], which learns paragraph-level representations of documents via
an additional model input representing paragraph indices. Finally, it is possible to train
the aggregation of word into document embeddings, for example using the final state of
a recurrent neural network or the output of a self-attentive probe layer [30]. Advanced
models such as these were used by Alexandros Tsaptsinos [25] to classify 20 music
genres in a corpus of around 500,000 documents.

Solving these two problems (large vocabulary size and variable sequence lengths)
is crucial to designing an accurate music tagging system from lyrics. Making this
work practically, and at scale, is the subject of this paper. More concretely we inves-
tigate the efficaciousness off “off-the-shelf” language models trained on O(100B) to-
kens, training our own word embeddings from scratch on a bespoke lyrics dataset, and
“warm-starting” the training. To produce a representation of an entire song, we evaluate
whether word-level features should be averaged, or processed using recurrent architec-
tures. It is out hope that this paper will serve as a practical guide for researchers hoping
to make use of lyrics in tagging tasks.

2 Methods

The core of our investigation is trialling several options of representing song lyrics
as an embedding. For this purpose we chose a transfer learning setup with distinct
document embedding and tagging stages (Figure 1). This setup has benefits beyond
our investigation: the document representation can be learned from massive amounts of
unlabelled lyrics, and can be re-used for different downstream tasks. We describe the
model components in detail below, beginning with some definitions.

2.1 Definitions

In line with the NLP literature, we will refer to the lyrics to a song as a document, and
to a collection of lyrics as a corpus. A document is made up of multiple words, usually
broken by whitespace, but it is sometimes more convenient to work with subword fo-
kens so that information can be shared between words like play, played, and playing in a
model. Broader structural information within documents come in the form of sentences
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Fig. 1: We begin by processing raw lyric strings, before generating embeddings at the
word level. We then have various methods of computing document embeddings: both
supervised (sequence models with artist identification as the target) and unsupervised
(averaging and doc2vec). At the end of this process we have a single embedding per
document, which is our proposed representation. We then evaluate these embeddings
by training deep tagging classifiers on the same representation.

(groups of words separated by a period or other punctuation) or paragraphs (longer
groups of words separated by line breaks). Lyrics do not often feature well-defined sen-
tences but instead are arranged into lines and stanzas. As these are roughly analogous
to sentences/paragraphs, so we will refer to them as such in the remainder of the paper.

2.2  Word embeddings
Baseline Models We begin by defining some simple baseline models:

— random: random embeddings of dimension 128.
- bag-of-words—d: bag-of-words models with dimension d.
— tf-idf-d: TF-IDF models of dimension d.

For bag-of-words-d/t £-idf-d, we trimmed the vocabulary of the corpus by re-
moving words which appeared in at least 90% of documents, and then retained the d
most commonly occurring words. We had initially planned to reduce the dimensional-
ity of the baseline models in a more principled way through dimensionality reduction
techniques such as Principal Component Analysis, but realized that even with a sparse
implementation we could not scale these techniques to our dataset size.

Custom-trained word2vec Next, we trained word2vec models on our dataset, using
the Python package gensim! to omit words which occurred fewer than five times in
the dataset, and trained for 5 epochs — these hyperparameters seemed sensible enough
that we did not attempt to optimize them. We did however try several embedding di-
mensions for use in downstream evaluation (see Table 2), and refer to these models as
word2vec—d for dimensionality d.

"https://radimrehurek.com/gensim/
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Pre-trained word2vec The appeal of pretrained embeddings is that they have been
exposed to a massive amount of text — typically several orders of magnitude larger than
in-house datasets. They can therefore learn a good general-purpose understanding of
word semantics, which can then optionally be fine-tuned on a specific domain task. For
our experiments we used the google news 300 dataset, which contains 300-dimensional
vectors for around 3 million words, trained on around 100 Billion tokens [17]. Naturally
some words appeared in our data for which no pretrained embedding existed - these
were simply omitted. We refer to this model as google-300.

Warm-start word2vec We also attempted to “warm-start” the training of the em-
beddings from the model above into new embeddings google-300-warm - these
vectors retained their dimensionality and we kept the same training hyper-parameters
as word2vec—d. The vocabularies of the two models were merged, such that words
which appeared in both models took their initial state from google—300 whilst words
which were unique to word2vec—d had random initial state.

2.3 Word Embedding Summaries

For all representations above, to obtain a document-level representation we used aver-
aging (for word2vec—d) or the native summary statistic (e.g. summing word counts
in a document for bag-of-words—d).

In order to take paragraph structure and/or word order into account when computing
document embeddings, we make use of more sophisticated summarization techniques.
This section investigates various methods for achieving this.

doc2vec We begin with doc2vec [12], once again using the gensim implementation.
We refer to these models as doc2vec—d.

LSTM and Attention Next, we kept the best-performing word embeddings from Sub-
section 2.2 and experimented with two neural sequence models: Long Short Term Mem-
ory networks (1stm), and an attention network (attention). In order to learn the
sequence parameters for these models, we needed a target for the model to predict. Not
wanting to use any labels which would be later used in our evaluation framework (see
2.4), we decided to use the artist identifier as the target.

The number of unique artists in our dataset is naturally very large, so we consid-
ered using negative sampling [18] to simplify the task for the networks. However, we
noticed in prior informal experiments that good results can actually be obtained with a
large softmax layer instead. Practically speaking, we proceeded by selecting the 1,000
most common artists in the dataset and computing their song counts. We then randomly
sampled as many songs as we could for each of these artists such that we obtained a bal-
anced dataset. The final state for 1stm, or the aggregated embedding for attention,
were then connected to the target with dense layers.

We defer the discussion of results until Section 4, but note here that both these
models achieved a categorical accuracy in the artist identification proxy task of around
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0.852. In the next Subsection we describe our tagging model and the datasets used to
evaluate and compare different document embeddings.

2.4 Tagging Framework

Multi-label Our tagging model is a multi-task neural network architecture, where pre-
dictions on different tag vocabularies are treated as different tasks. The input embedding
is projected through a stack of fully connected layers until it branches to a number of
linear output layers, one per tag vocabulary. The loss function used to train the network
is obtained by summing the binary cross-entropy loss terms associated with the output
branches. Note that binary cross-entropy loss is used instead of the categorical cross-
entropy loss because multiple tags within the same vocabulary can be active for the
same document.

Multi-task We use multiple annotated datasets, defined over different set of docu-
ments: each dataset defines its own tag vocabulary and task. The multi-task formulation
makes it convenient to handle missing annotations, while still training all tasks in par-
allel. The overall loss is:

Li= NaiaLia, (1

where L; 4 is the loss term associated with the i-th task for document d, A; the loss
weight for the task, and a; 4 € [0,1] a binary flag that represents whether document d
is present in the annotations for task . When a track does not appear in an annotation
dataset, the loss terms associated with that dataset is set to zero.

Training During training, mean Average Precision (mAP) is computed at each epoch,
and training is stopped when mAP reaches a plateau on the validation set. Vocabulary-
wise metrics are obtained simply by averaging the values for each tag, and a final scalar
value is obtained by averaging across all tag vocabularies, weighted by the number of
tags in each vocabulary. A summary of the hyper-parameters searched for all models is
shown in Table 2.

3 Datasets

Lyrics datasets We began with an internal dataset of 17,389,303 documents with
primary language as English.> Documents were then tokenized in gensim via the
simple_preprocess function. We discovered that the distribution of number of
tokens in the documents had an extremely long tail. This was prohibitive for sequence
models, so for all document embedding experiments we truncated the number of to-
kens to 512, which reduced the maximum sequence length from 8,641 to 512 yet only
affected 4% of documents. After preprocessing, we were left with a corpus of approxi-
mately 3.8 billion tokens.

% a random classifier would score around 0.001
3 deriving multiple language embeddings is an interesting extension of our work but beyond the
scope of this paper
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Tagging datasets We trained the tagging models on a set of internal datasets that were
either manually curated or created from metadata. The datasets contain tags from dif-
ferent domains, e.g. genre, mood, release date, and are defined over different, but over-
lapping, set of documents. A description of the datasets is provided in Table 1.

Examples per label

Dataset Example tag Tracks  Tags Tags/track Min  Mean Max
Flagger spoken 58,444 6 1 2,700 9,740 39,796
Era 10s 50,450 9 1 87 5,769 17,616
Moods Chill 71,271 22 1.9 100 6,092 21,995
Explicit True 48,683 2 1 16,234 24,241 32,449
Genre-1 Sufi 2,702,226 460 2.1 25 5,835 122,224
Genre-2 Piano 479,792 273 1 490 1,757 2,000
Genre-3 East Coast Rap 39,087 261 33 21 497 11,105
Genre-4 Worship 562,274 25 3.6 152 79,966 426,008

Table 1: Tag datasets used for evaluation. Tags/track is simply the number of tags per
track, averaged over each dataset.

Some of the tag datasets may contain multiple labels for the same track, which
makes creating balanced data splits more challenging. We used iterative splitting [21],
while also forcing tracks from the same album to appear in the same split [4]. Note that
some of the tagging datasets do overlap with the datasets used to train the document
embeddings. However the risk of overfitting here is small because the only label we use
for training our embeddings is the artist identifier (see Subsection 2.2).

4 Results

4.1 Word embeddings

We show our results for overall mAP using word embeddings in Figure 2, showing
only the best-performing model dimensionality in each group. All models outperform
the random baseline but accuracy is varied across the tasks, owing in part to the differ-
ences in vocabulary size (recall Table 1). The word2vec—-512 model with averaging
achieves top performance on 6 of the 8 tasks, and is a close second on the Flagger
task.

The only task on which a pretrained model is able to compete with word2vec—-512
is on the Moods dataset. In general, warm-starting the training of embeddings did not
yield improvements on our evaluation datasets.

4.2 Document embeddings

We selected word2vec—512 as our best-performing word-level embedder, and set
out to see if we could improve over simple embedding averaging — see Table 3 for our
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Hyperparameter Values
embedding dimension {27,...,2%
dropout {0.1,...,0.9}
learning rate {107%,...,107%}
dense layers {2°)...,2%}
dense size {2%,...,2%)
Istm units {26)...,2%
attention probes {2%,...,2%}
attention mapping dimension {2%,...,2°}

Table 2: Hyper-parameters evaluated in our experiments. Bayesian hyperparameter op-
timization [23] was used to optimize the validation mean Average Precision, with early
stopping and patience of 10 epochs. 20 trials were run concurrently and in total 100
trials were conducted for each model.

results. Here we see that only attention is able to compete with word2vec-512,
reaching similar performance on Genre-3 and superior scores on the Moods and
Explicit datasets.

Given the ability of attention to effectively label moods and explicit content,
it seems that artist identification was a suitable proxy task for training the sequence
models, or that the attention architecture is well suited for tasks related with specific
keywords, such as emotions for moods or offensive content for Explicit.

It is unclear why the powerful 1stm/attention models do not yield higher
scores. One reason could be that we have sufficient data to train excellent word embed-
dings, such that further refinements are simply hard to realize. With this in mind, and
knowing that in many cases large amounts of data are difficult to come by, we were
interested to see what kind of performance could be attained from subsets of our data.

Flagger Era Moods Explicit Genre-1 Genre-2 Genre-3 Genre-4

word2vec-512  0.429 0.365 0.202  0.687 0.086 0.065 0.095 0.366
doc2vec-512  0.368 0.271 0.183  0.727 0.060 0.037 0.069 0.358
Istm 0.330 0.247 0.204 0.723 0.044 0.041 0.057 0.282
attention 0427 0295 0.272  0.760 0.070 0.057 0.107 0.350

Table 3: Mean average precision for each model and tagging dataset for computing
document embeddings. Best results for each dataset are in boldface.

4.3 Incremental training

We trained word2vec—512 on random subsets of our data: 0.001%, 0.01%, 0.1%,
1%, 10%, retaining the full evaluation test set in each case. Results can be seen in
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Fig. 2: Word-level embedding experiments, showing mAP on each tagging task. Docu-
ment embeddings obtained by averaging/summing embeddings across words.

Figure 3, and show that in fact over 80% of the mean average precision can be obtained
from 1% of the data (around 170,000 songs).

5 Conclusions

In this paper, we provided a comprehensive quantitative analysis of word2vec style em-
beddings for music tagging. On a range of challenging tagging tasks at the scale of
millions of songs, we discovered that it is hard to surpass the performance of relatively
simple models trained on in-house data. Small improvements to averaging embeddings
were shown to be possible through sequence modelling, although results were not con-
clusive. Experiments on sampled data show that increasing training set size beyond
O(1M) songs did not significantly improve tagging performance.

In future work, we are interested about the idea of extending our embedding frame-
work to languages beyond English, and also seeing how useful our embeddings are as
a source of side information in tasks such as music recommendation.
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Abstract. A distinguishing feature of the music repertoire of the Syrian tradi-
tion is the system of classifying melodies into eight tunes, called ’oktoechos’.
It inspired many traditions, such as Greek and Indian liturgical music. In ok-
toechos tradition, liturgical hymns are sung in eight modes or eight colours
(known as eight "niram’, regionally). In this paper, the automatic oktoechos genre
classification is addressed using musical texture features (MTF), i-vectors and
Mel-spectrograms through deep learning strategies. The performance of the pro-
posed approaches is evaluated using a newly created corpus of liturgical music
in Malayalam. Long-short term memory (LSTM)-based experiment reports the
average classification accuracy of 83.76%, with a significant margin over other
frameworks. The experiments demonstrate the potential of LSTM in learning
temporal information through MTF in recognizing eight modes in oktoechos sys-
tem.

Keywords: liturgy, colour, timbral, deep learning.

1 Introduction

Oktoechos classification in liturgical music (music using in worship) is addressed using
deep learning frameworks in the paper. Music plays a vital role in liturgy because mu-
sic itself is a language that goes beyond even cultures and races. The vast diversity of
forms, styles, and functions in the music used for worship makes it challenging to cate-
gorize liturgical music. Musical roles have been distributed in different ways in differ-
ent rites. Indian orthodox church has imbibed this music system into its liturgy through
its relationship with the orthodox church in Syria (Antiochian liturgy). A distinguish-
ing feature of the music repertoire of the Syrian tradition is the system of classifying
melodies into eight tunes [15]. This musical tradition is transferred to Indian orthodox
liturgical music through centuries with hymns in the Malayalam'. Most of the hymns
used for various feasts and occasions are musically composed under eight tunes. The
system of singing the same text in eight different melodies in an eight-week cycle is
referred to as the’oktoechos’ [15].

! https://en.wikipedia.org/wiki/Malayalam
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1.1 Oktoechos

Western Syriac music is based on the classical tradition prescribed in ’'Bethgazzo’?.
In oktoechos tradition, liturgical hymns are sung in eight modes, similar to the Greek
liturgy. They are a group of eight adaptable melody types, known as eight ’colours’ or
"niram’ [27]. None of the Syriac melodies may cover eight notes in an octave. It may
often cover three or four or five notes. There is a similarity in Syrian/Indian liturgical
(Malankara) hymnal music and raga® of Indian art music. But they cannot be taken
in equal level because the raga classification of Indian art music is incomparable in its
scientific systematisation. Each raga has a particular mode and temperament. Oktoechos
can be compared to raga in the sense that they are also creating passion or rasa during
singing [27]. In Indian art music, a hymn in a raga can be sung or played in another
raga. The same principle is applied in the oktoechos system that most of the liturgical
hymns can be sung in all the eight tunes.

Oktoechos is considered as a cyclic system because it is performed in a cycle of
eight weeks with two colours in a week. Each colour begins with evening prayer of
Sunday. If the first colour is used in the evening, the same is continued for the rest
of the day. From Monday evening onwards the fifth colour is used. On Tuesday, it is
again switched on to the first colour and so on. The next Sunday begins with the second
colour. It is continued in the order 1-5; 2-6; 3-7; 4-8; till to the fourth Sunday and on
the fifth Sunday onwards the order becomes 5-1; 6-2; 7-3; 8-4.

1.2 Related Work

Although there has been significant work in music genre classification, the proposed
task of liturgical music genre classification is first of its kind. Melodic features [23] and
local features [28] have been employed well for genre classification task. Researchers
used both generative and discriminative models [12, 24] for music classification. Musi-
cal texture features are recently used in meter classification works [22, 21, 19]. Music
genre classification is addressed using feature fusion in [20]. A model capable of learn-
ing distinctive rhythmic structures of different music genres using unsupervised learn-
ing is proposed in [16]. In contrast with the standard approaches, model-based distances
between time series can take into account the structure of the songs by modelling the
dynamics of the parameter sequence [7]. More recent deep learning approaches process
spectrograms for the task of music genre classification [17, 3]. Regarding multimodal
approaches found in the literature, most of them combine audio and song lyrics [11]
through a fusion framework. The proposed task is similar to music genre classification,
but shares the textual content across modes is one of the specific traits of the oktoechos
genre system. The aim of the work is to explore the ability of LSTM to capture the long
range dependency in learning temporal patterns.
The rest of the paper is organized as follows; Section 2 describes the proposed
system followed by the performance evaluation in Section 3. The analysis of results is
given in Section 4. Finally, the paper is concluded in Section 5.
2 Bethgazzo is a Syriac liturgical book that contains a collection of Syriac chants and melodies.
? raga is the fundamental melodic framework for both Carnatic and Hindusthani traditions
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2 System Description

2.1 Feature Extraction

It has already been proven that timbral and rhythmic features are useful in genre classi-
fication task [1]. In our experiment, we extracted timbral and rhythmic features as musi-
cal texture features. Timbral features, namely Mel-frequency cepstral features (MFCC)
and low-level timbral feature-set (77, r), are computed in the front-end. Spectral cen-
troid, spectral roll-off, spectral flux, and spectral entropy [13] are extracted as low-level
timbral feature set. Besides, features namely tempo, pulse clarity, event density [10] are
computed as rhythmic cues (Rr). Event density represents the number of events per
unit time in the music piece. It is a measure that captures how easily “listeners can per-
ceive the underlying rhythmic or metrical pulsation of music” [10]. This feature plays
an important role in musical genre recognition, in particular, allowing a finer discrimi-
nation between genres that present similar average tempo, but that differ in the degree
of emergence of the main pulsation over the rhythmic texture [10]. The distribution of
pulse clarity for the corpus is shown in Fig. 1. It can be seen that the pulse clarity dis-
tribution for niram 1, niram 2 and niram 3 is different from the rest. Low-level timbral
features and rhythmic features are computed using MIRToolbox *.

0.9945 0.995 0.9955 0.996 0.9965 0.997 0.9975
Pulse Clarity

Fig. 1: Distribution of pulse clarity for the colours

Given the success of using i-vectors for speaker and music processing tasks [29, 6],
we use the i-vector framework in the proposed task for performance comparison. The
i-vector-based statistical feature has been employed well in the task of music genre
classification [4]. In i-vector system [5], the high dimensional GMM super vector space
(generated from concatenating the mean values of GMM) is mapped to a low dimen-
sional space called total variability space. The target utterance GMM is adapted from
a universal background model (UBM) using eigenvoice adaption. The target GMM su-
per vector can be viewed as a shifted version of UBM. Formally, a target GMM super
vector M can be written as:

M=m+Tw (1

* https://www.jyu.fi/hytk/fi/laitokset/mutku/en/research/materials/
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where m represents the UBM super vector, 7" is a low dimensional rectangular total
variability (TV) matrix, and w is termed as i-vector. Using training data, the UBM and
TV matrix is modeled by expectation maximization. 100 dimensional i-vectors (imprcc)
are computed for each song from MFCC using Alize tool kit [2].
In the final phase, visual representation of audio files, spectrograms are utilized
for the proposed task. Since Mel-spectrogram has already been utilized well for music
genre classification tasks [25, 8], we also experimented with mel-spectrogram-CNN
framework for the proposed task. Mel-spectrogram can be seen as the spectrogram
smoothed, with high precision in the low frequencies and low precision in the high
frequencies. Mel-spectrogram is computed with frame size of 40 ms and hop size of 10
ms using 128 bins.

2.2 Classification Scheme

We experimented with four classifiers, namely, SVM, DNN, CNN and LSTM. DNN is
based on six hidden layered network, which uses 64, 128, 256, 512, 1024, 2048 nodes
in successive layers with a dropout of 0.25. The network is trained with the batch size
is 32 for 150 epochs by AdaMax optimization algorithm. Relu and softmax have been
chosen for hidden and output layers, respectively.

Table 1: LSTM architecture used for the experiment

Sl no.[ Output Size] Description ‘
1 (45,64) LSTM, 64 hidden units
2 (46, 64) Dropout (0.25)
3 (1024)  |LSTM, 1024 hidden units
4 (1024) Dropout (0.25)
5 8) Dense (8 hidden units)

The proposed CNN has six convolution layers, followed by max-pooling. We use
filters with a very small 3x 3 receptive fields, with a fixed stride of one and increase the
number of filters for the layer by a factor of 2 after every layer. Global max-pooling is
adopted in the final max-pooling layer, which is then fed to a fully connected layer. The
training is done with 100 epochs by optimizing the categorical cross-entropy between
predictions and targets using Adam optimizer, with a learning rate of 0.001.

LSTM architecture shown in Table 1 effectively utilized to track the temporal pat-
tern embedded in the modes of the music. LSTM-RNNs can capture long-range tempo-
ral dependencies by overcoming the vanishing gradient problem in conventional RNNs
[26]. RNN tap inherent temporal pattern embedded within the frame-wise computed
MTF. Deep learning schemes and SVM are implemented using and Keras-TensorFlow
and LibSVM, respectively.
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Table 2: Overall classification accuracy for the experiments
SI.No|Feature Method [Accr.(%)
MFCC+TLr + RFr | SVM | 42.65
MFCC + Trr+ RF | DNN | 48.70
iMmrcc + TLr + Rp DNN 50.00
Mel-spectrogram CNN 52.60
MFCC + TLF+ RF LSTM 83.76

N B W[ =

3 Performance Evaluation

3.1 Database

A database is created in a studio environment and it consists of eight nirams (colours),
with 384 audio tracks with duration 25 to 45 sec per file. No accompaniments were there
in the audio files. A total of 15 professional singers in the age group 12 to 50, were par-
ticipated in the data recording and the whole session was recorded at 44.1kHz. All the
singers were very much familiar with the singing modes in ’oktoechos’. Malayalam
hymns were collected from the liturgical book of Indian Orthodox church. The record-
ings were made niram by niram in successive sessions using a high-quality microphone,
A few audio files can be accessed at https:/sites.google.com/view/audiosamples-2020/.
During experimentation, 60% files of the dataset are used for training, 10% is used for
validation and the rest for testing.

3.2 Experimental set-up

MFCCs (39 dim comprising 13 dim MFCC, its delta and delta-delta features), timbral
(Tt r, 4 dim) rhythmic (Rp, 3 dim) are frame-wise computed with a frame width of
40 ms and hop size of 10 ms and fused in feature-level to obtain 46-dimensional MTF.
In the i-vector experimental phase, 100-dimensional i-vectors are computed using 128
mixture GMM from MFCC using Alize tool-kit [2]. UBM model is trained using fea-
tures derived from the auxiliary database comprising audio file other than the files in
the corpus. Auxiliary database, comprising 300 audio files (duration 25-35ms) of litur-
gical music category, is prepared in a studio environment. The songs from the training
data are used for modelling the total variability matrix 7" by Eigen voice adaption. In
the fusion scheme, track level aggregated timbral (17, r) and rhythmic (Rr) features
are concatenated with track-level computed i-vectors. Following the evaluation method
widely used in the MIR tasks, we computed the precision and recall and the F1 measure
as basic evaluation metrics for the performance.

4 Results and Analysis

The results are tabulated in Table 2. As per the table, the average classification accuracy
of 42.66%, 48.70%, 50.00%, 52.60% and 83.76% are reported for SVM, DNN, i-vector
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Fig.2: Accuracy with number of layers for CNN and LSTM

framework, Mel-spectrogram-CNN and LSTM, respectively. It is worth noting that the
LSTM outperforms other approaches with a significant margin. It is reasonable to say
that time pattern capturing scheme is needed in order to recover more relevant infor-
mation from temporal embedded musical traits [7]. Experiments show that the LSTM
approach is promising for the given task, improving on the case where the dynamics are
not taken into account, and a stationary characterization of the sequences is employed.
LSTM utilized musical textural features to capture song dynamics effectively to per-
form oktoechos classification. It is shown in [4] that the important music elements can
be captured by i-vectors and may potentially benefit to the classification of music sig-
nal. A possible cause of the low value of accuracy in the given experimental set-up may
potentially due to the inability to capture the rhythmic-temporal dynamics well with the
given UBM framework. Besides, aggregation of musical texture features to track-level
might have deteriorated the performance.

The performance with varying the number of layers of the network is shown in Fig.
2. For the CNN framework, the result improved, as the number of layers increased up
to six and then saturated due to overfitting. It is due to the fact that as n increases,
the model grows in-depth, and the upper layers find efficient feature representations
that are invariant to small perturbations leading to better model generalization. The
authors [14] emphasize the need for more training data in the visual representation-
based approaches for the genre classification task. It is stated that CNN needs a large
size of data to achieve better results since it is not successful enough for less data [9].
An elegant solution to this problem is data augmentation, by which deformations to
a collection of annotated training samples results in additional training data. During
LSTM approach, maximum accuracy is obtained for two layers as seen in lower-pane
in Fig. 2. The proposed experiment validates the claim that temporal information has
effectively been learned by MTF-LSTM framework. The experimental insights in [18]
show that the performance of the system depends on the temporal architecture, which
is basically designed by considering the musical domain knowledge.

The normalized confusion metrics of LSTM is plotted in Fig. 3. Class-wise classi-
fication accuracy of all nirams are greater than 70% for LSTM. Niram 5 and niram 7
report accuracy greater than 90%. Class wise accuracy can be examined from the bar
plot given in Fig. 4 from all phases. The significant improvement in class-wise accu-
racy of nirams 1, 3, 7, and 8 over CNN based framework can be seen from the plot. The
performance can potentially be improved using data augmentation and proper choice
of architecture. The performance metrics precision, recall and F1 score for all the five
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Fig.3: Normalized Confusion Matrices for MTF-LSTM

approaches are given in Table 3. The average F1 measure of 0.43, 0.50, 0.50, 0.52, 0.84
are reported for SVM, DNN, i-vector-DNN, CNN and LSTM, respectively. The high
values of precision, recall and F1 score show the significance of LSTM for the pro-
posed task. Fig. 5 visualizes the output vectors produced by the snippets for the last
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Fig.4: Class-wise performance for entire phases of the experiments

dense layer of the trained LSTM network using t-SNE. Note that there is good cluster-
ing (as represented with colour) and a general separation of different classes for LSTM.
It is important to note the effectiveness of LSTM in the proposed task without using any
modelling data or augmentation data as that of i-vector or CNN methodologies. Since
the results show the promise of temporal pattern learning, other frameworks have to be
experimented to investigate the potential of the proposed approach.

5 Conclusion

Oktoechos classification is addressed in this paper. The performance of the proposed ap-
proaches is evaluated using a newly created corpus of Liturgical music in Malayalam.
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Table 3: Precision (P), recall (R), and F1 measure

|SL.No| Colour |[MFCC+T7, p+Rp-SVM|MFCC+T -+ Rr-DNN

ivrcc+7L r+ R -DNN|Mel-spectrogram-CNN| MFCC+ T p+R - LSTM]|

7 7 | P | R | F1 | P | R | F1 |P|R| F1 | P|R| F1 | P | R | F1 7
1 |Niram-1{0.55[0.30| 039  |0.35/0.58] 044  [0.48[0.56] 051  |0.42/0.50] 045  ]0.80(0.84 0.82
2 |Niram-2{0.40(0.42| 0.4 036|045 040  |0.46[0.61| 052  |0.52[0.68) 059  |0.74/0.85 0.79
3 |Niram-3]0.25[0.42| 031  ]0.32{0.37| 034  |0.54[0.39| 045  |0.70{0.35] 047  |0.93/0.74 0.82
4 |Niram-40.64/0.47| 055  |0.71{0.53]  0.61  |0.46/0.33] 039  [0.69/0.58]  0.63  |0.88/0.70 0.78
5 |Niram-50.62{0.40| 048  [0.53]0.47|  0.50  |0.40/0.44| 042  |0.54/0.68]  0.60  |0.86/0.95 0.90
6 |Niram-6{0.430.68) 053 |0.62(0.53] 057  |0.520.61] 056  |0.55[0.63]  0.59  |0.75[0.79 0.77
7 |Niram-7|0.3310.37| 035 [0.50{0.35| 041  |0.59/0.56|  0.57  |0.47|0.42| 044  |0.95/0.95 0.95
8 |Niram-8|0.54/0.37) 044  ]0.80[0.63| 071  |0.60]0.50]  0.55  [0.44/0.37| 040  |0.85/0.89 0.87
_ [Macro [0.47]0.43]  0.43  [0.52[0.48]  0.50  [0.50[0.50]  0.50  [0.54[0.53]  0.52  [0.85]0.84] 0.84
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The evaluation shows the potential of MTF-LSTM framework in Oktoechos classifi-
cation with an average classification accuracy of 83.76%. Since the Greek liturgy and
Gregorian chant also share similar musical traits with Syrian tradition, the musicologi-
cal insights observed can potentially be applied to those traditions as well.
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Abstract. Music has always been an integral part of our everyday lives through
which we express feelings, emotions, and concepts. Here, we explore the asso-
ciation between music genres, demographics and moral values employing data
from an ad-hoc online survey and the Music Learning Histories Dataset. To further
characterise the music preferences of the participants the generalist/specialist
(GS) score employed. We exploit both classification and regression approaches
to assess the predictive power of music preferences for the prediction of demo-
graphic attributes as well as the moral values of the participants. Our findings point
out that moral values are hard to predict (.62 AU ROCl.4) solely by the music
listening behaviours, while if basic sociodemographic information is provided
the prediction score rises to 4% on average (.66 AUROC .4), with the Purity
foundation to be the one that is steadily the one with the highest accuracy scores.
Similar results are obtained from the regression analysis. Finally, we provide
with insights on the most predictive music behaviours associated with each moral
value that can inform a wide range of applications from rehabilitation practices to
communication campaign design.

1 Introduction

Music played a fundamental role in the evolution of societies being tightly related to
communication, bonding, and cultural identity development [14]. Influencing a wide
range of cognitive functions such as reasoning, problem-solving, creativity, and mental
flexibility [17], musical taste is also known to be strongly related to personality [7] and
political orientation [6]. Musical sophistication is also shown to be related to personality
traits regardless of demographics or musicianship level [10].

More recently, scientists aside from the traditional self-reported surveys [6], em-
ployed digital data and in particular online music streaming [2] and social media [20]
data to assess music preferences. Employing data from the myPersonality Facebook
project, Nave et al. [20], found that both people’s reactions to unfamiliar music samples
and “likes” for music artists predicted personality traits. Krismayer et al. [13] studied the
Last.fm platform showing that the music listening behaviours can predict demographics,
including age, gender, and nationality. More recently, Anderson et al. [2] presented
evidence about the connection between personalities and music listening preferences
studying Spotify music streaming data.
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Building on comparable interactionist theories, we set to explore the less attended
relation between moral values and music preferences. We operationalise morality ac-
cording to the Moral Foundations Theory (MFT) [9], which defines five moral traits,
namely Care/Harm, Fairness/Cheating, Loyalty/Betrayal, Authority/Subversion, and
Purity/Degradation. These can further collapse into two superior moral foundations: of
Individualising, compounded by fairness and care, that asserts that the basic constructs
of society are the individuals and hence focuses on their protection and fair treatment,
and of Binding, that summarises purity, authority and loyalty, and is based on the respect
of leadership and traditions.

Moral values are considered to be higher psychological constructs than the more
commonly investigated personality traits yet they have attracted less attention from
music scientists. In recent literature there are indications that negative emotions enforced
by types of music can worsen moral judgement [3] although that study did not rely on a
psychometrically validated theory like the MFT. Kalimeri et al. [12] demonstrated the
predictability of moral foundations from a variety of digital data including smartphone
usage and web browsing. Their results showed that moral traits and human values are
indeed complex, and thus harder to predict compared to demographics, nevertheless, they
provide a realistic dimension of the possibilities of modelling moral traits for delivering
better targeted and more effective interventions.

Here, we train classification and regression models which infer on self-reported
survey data regarding the music preferences. We thoroughly assess the rapresentativity
of our data, not only in terms of sociodemographic attributes but also from music be-
havioural patterns comparing against the open access dataset of music learning histories
dataset (MLHD). Our results show that moral values are indeed predictable from music
preference information and in line with the findings of the related literature. Further, we
discuss the most predictive music behaviours, contributing to an in-depth understanding
of the moral profiles. Such insights are fundamental to the broader picture since moral
values are a key element in the decision making process on several societal issues [11,
?]. Modelling moral values from music represents a great opportunity for improving
recommendation systems; designing online streaming applications with user well-being
in focus [18]; increasing engagement to communication campaigns for social good
applications.

2 Data Collection and Feature Engineering

Here, we employ data from a third-party survey administered online for a general scope
marketing project. The survey consists of 2,003 participants (51% females) from 12
different regions in Canada. The participants filled in, among other items, information
about basic demographic attributes, including age, gender, education, and political views.
They also completed the validated Moral Foundations questionnaire [9], while stated
their preferences on 13 music genres (on a 5-point Likert scale where 1 = strongly dislike
and 5 = strongly like). The considered music genres were: alternative pop/rock, christian,
classical, country, folk, heavy metal, rap/hip-hop, jazz, latin, pop, punk, R&B, and rock.
These genres were set from the survey creators and were not further described to the
respondents. Even so, they are commonly used to define general musical tastes among
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Table 1. Summary of the survey dataset (cleaned) with major demographic attributes utilised for
this research work.

Attributes Demographics Sample size
(N =1062)
18-24 80 (7.5%)
25-34 154 (14.5%)
Ace 35-44 205 (19.3%)
g 45-54 205 (21.9%)
55-64 187 (17.6%)
65+ 203 (19.1%)
Male 474 (44.6%)
Gender Female 588 (55.3%)
Less than High School 35 (3.2%)
High school graduate 195 (18.3%)
Education Some College 154 (14.5%)
Trade or professional school 115 (10.8%)
College Graduate 349 (32.8%)
Post Graduate work or degree 205 (19.3%))
Conservative 328 (30.8%)
Liberal 279 (26.2%)
.. NDI (New Democratic Party) 184 (17.3%)
Political Party Green Party 66 (6.2%)
Party Quebecois 56 (5.2%)
I don’t vote 149 (14%)

non-musician respondents. To justify these genres and observe if there is any affiliation
between survey reported preferences and digital music listening patterns, we explored
digital data of 1062 Canadian listeners extracted from the Music Learning Histories
Dataset (MLHD) [22] with a similar age and gender distribution to our survey.

Moving on to our survey data, to make sure that participants were paying attention
to the survey questions, two “catch questions” were included, which we later used to
filter the data. After excluding these users we were left with 1,062 participants (55%
females), a sample size substantially higher than previous survey-based studies [7, 6].
Table 1 summarises the demographic features of our dataset.

We then applied a factor analysis using principal axis factoring with promax rotation
to identify the major dimensions of participants’ music preferences. A 5-factor solution
was retained, which explained 67% of total data variance: {jazz, classical, latin}, {punk,
heavy metal, rap/hip-hop}, {pop, R&B}, {country, Christian, folk}, and {rock, alterna-
tive pop/rock} (genres ordered by decreasing factor loading). These factors are in line
with the ones obtained in related studies [7].

To quantify the respondents’ diversity in music preferences, we employed an adapted
version of the generalist-specialist (GS) score, inspired by the work of Anderson et al.
[1]. The projections of the 13 genres onto the five factors were considered as that genre’s
vector representation in the “preference space”. Intuitively, generalists versus specialists
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Table 2. Detailed list of the experiments we performed with the list of features employed as
predictors in each one of them.

D Features Employed as Predictors

EX1 13 Music Genres

EX2 5 factors

EX3 GS score

EX4 13 Music Genres, Age, Gender

EX5 13 Music Genres, Age, Gender, Education

EX6 13 Music Genres, Age, Gender, Education, Political Views

will have genre vectors spread apart versus close together in the preference space. We
calculate the user centroid ct; of genre vectors representing the loadings of genres on the
5 factors l_;, weighted by the number of genre scores rated by each respondent w;. The
GS score is the cosine similarity between a genre vector and the preference-weighted
average of a users’ genre vectors:

GS(u) = — 3w L AL S
i) = : J — ’ = : 7%
2o wj 13 Il Il et | 2w

3 Experiments and Results

Exploratory Analysis. As a first step we assess the correlation between musical genres’
preferences, demographics, political views and moral traits. We observed a positive
Spearman correlation of age with Christian music, classical, country and folk music
genres (ps = {0.18, 0.21, 0.20, 0.25}), while heavy metal, hip-hop/rap and punk
were more preferred by younger ages, whereas older people expressed their dislike
towards these genres (ps = {-0.22, —0.38, —0.38 }). Education was positively related
with classical music, jazz and latin music (p; = {0.22, 0.13, 0.13}), indicating that
people with higher education preferred these genres. Loyalty, authority and purity were
positively correlated with Christian music (ps = {0.18, 26, 38}) and country music
(ps = {0.17, 20, 21}). Looking at the political views of the respondents, conservatives
were positively correlated with Christian genre and country (p; = {0.12, 0.12}) and
negatively correlated to hip-hop/rap and punk (ps = {-0.17, —0.15}).

Further, we assessed whether the obtained self-reported responses of the question-
naire are in line with digital music listening data. From the MLHD dataset [22] we
extracted artists’ genres using MusicBrainz identifiers. From the survey data we dis-
cerned that the top 10 most preferred genres were: rock, pop, alternative pop-rock,
classical, r&b, country, jazz, folk, latin, and hip-hop/rap. Similar trends were encoun-
tered in the music listening histories of Canadian users in MLHD where the 10 most
frequently listened genres were: rock, alternative rock, pop-rock, pop, electronic, folk,
punk, jazz, heavy metal, and hip-hop.

Moral Values Classification. Our main research question is whether we can predict
peoples’ moral values from their music preferences. To answer this question, we postulate
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Table 3. Moral traits classification with XGBoost, average weighted AUROC and standard devia-
tion over 5-fold cross-validation (baseline is .50).

EXI EX2 EX3
Care 573.7) 5421 52(1.5)
Fairness .56 (2.9) 52(1.1) 48 (2.7)
Authority 63 (0.8) .60 (1.1) 49 (1.7)
Purity .69 (2.8) 65 (3.0) 572.3)
Loyalty 61 (2.4) 56 (1.9) 48 (3.1)
Individ. 55(3.5) 51(0.8) 50 (1.6)
Binding 67 2.4) 63(2.2) 52(1.9)

Table 4. Moral traits classification with XGBoost for different predictors (see Table 2 where
they are defined). Models evaluated based on AUROC and standard deviation over 5-fold cross-
validation (baseline is 50).

EX1 EX4 EX5 EX6
Care 573.7) 62(3.2) 62 (3.0) 63(2.3)
Fairness 56 (2.9) 58(2.5) 572.3) 62 (4.3)
Authority 63 (0.8) 64 (1.6) 65 (2.0) .66 (1.6)
Purity 69 (2.8) 71 (3.0) 71 (1.4) 71 (1.6)
Loyalty 61 (2.4) 67 (3.5) 66 (2.2) 66 (2.9)
Individ. 55(3.5) 59 (2.4) 59 (3.3) 61 (1.8)
Binding 67 (2.4) 71(3.2) 70 (2.2) 72(2.9)

the task as a supervised classification one, developing a series of experiments to assess
the predictive power of different variables (see Table 2). We assign the class label “high”
to individuals with moral scores higher than the population median for the specific
foundation, and “low”, otherwise. We perform 5-fold cross-validation on shuffled data
(to avoid dependencies in successive data points), with 70% of training and 30% testing
data. We opt for the gradient boosting algorithm XGBoost (XGB) as it performed better
than Random Forest (RF) and Support Vector Machine (SVM) in this task.

To take into account the effect of unbalanced class labels in the performance met-
ric, we evaluate our models with the area under the receiver operating characteristic
(AUROC) metric which is a performance measure for binary classifiers that employs
a discrimination threshold to differentiate between a high and a low class [12]. The
best model is then chosen as the one that maximized the weighted area under receiver
operating characteristic (AUROC) statistic.

Initially, we compared the predictive power of the genre information against the
features engineered by us (EX1, EX2, and EX3). We trained one model per moral
foundation, and we present the cross validated results in Table 3. We notice that the
information obtained directly about the music preferences (EX1) outperforms the features
we developed. When comparing the scenarios, we observe that the 5 factors, and the GS
score accounting only for part of the variance in the data, did not manage to outperform
the explicit information on music preferences. A question that emerges naturally, is
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Fig. 1. Feature contributions (via SHAP values). The higher the SHAP value, the more the
feature contributes to the moral prediction.

whether including knowledge regarding the participants’ basic demographic features
(i.e. age, political views, education level) will improve the prediction of their moral
values. Table 4 summarises the results when age, gender, education and political views
are incorporated in the design. As expected, the more information we have about the
participants the more precise our predictions become, however, the improvement is
minimum. This shows us the importance of music behaviours alone in explaining the
variability of our moral values.

Further, we employed SHAP (SHapley Additive exPlanations), a game theory ap-
proach developed to explain the contribution of each feature to the final output of any
machine learning model [15]. SHAP values provide both global and local interpretability,
meaning that we can assess both how much each predictor and each observation, respec-
tively, contribute to the performance of the classifier. SHAP’s output helps to understand
the general behaviour of our model by assessing the impact of each input feature in the
final decision, thus enhancing the usefulness of our framework (Figure 1).

Moral Values Regression. Data binning is a common way to aggregate information and
facilitate the classification tasks. However, there are known issues to dichotomisation
of variables which often lead to misleading results [16]. Here, to ensure that the most
predictive features as emerged from the classification process are indeed descriptive of
the respective moral trait, we conducted a regression analysis. At this point, the aim is to
understand whether we can estimate the original moral scores (predicting the quantity)
based on our explanatory variables in disposition (i.e., music genres ad demographics).

To do so, we trained an XGBoost Regressor for each moral foundation. We main-
tained the same experimental designs and settings as in the classification task. For
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Table 5. Mean Absolute Error (MAE) and standard deviation over 5-fold cross-validation for
XGBoost regression on music preference features (see Table 2).

EXI1 EX2 EX3
Care 3.86 (13.2) 3.72 (10.9) 3.89 (7.0)
Fairness 327 (11.1) 3.28 (9.6) 3.55(8.7)
Authority 4.19 (23.3) 420 (16.7) 4.47 (13.9)
Purity 4.86 (19.7) 4.99 (25.0) 5.35 (21.0)
Loyalty 4.46 (12.1) 4.33 (19.4) 4.64 (11.6)
Individ. 3.23(9.5) 3.17 (8.5) 3.35(9.9)
Binding 3.86 (15.1) 3.79 (6.3) 422 (18.5)

Table 6. Mean Absolute Error (MAE) and standard deviation over 5-fold cross-validation for
XGBoost regression on music preference and demographic features (see Table 2).

EXI1 EX4 EX5 EX6

Care 3.86 (13.2) 3.72(6.2) 3.71(9.3) 3.60 (8.0)
Fairness 327 (11.1) 3.25(8.2) 3.19 (10.5) 3.12 (13.4)
Authority 4.19(23.3) 4.14 (15.9) 4.10 (9.3) 4.09 (11.0)
Purity 4.86 (19.7) 4.86 (20.4) 4.74 (18.9) 4.71 (15.8)
Loyalty 4.46 (12.1) 4.19 (22.8) 4.20 (18.7) 421 (18.7)
Individ. 3.23(9.5) 3.17 (14.4) 3.17 (8.0) 3.0 (8.9)

Binding 3.86 (15.1) 3.80 (11.0) 3.76 (13.1) 3.74 (5.4)

evaluation, we used Mean Absolute Error (MAE). These options allow for a direct
comparison of the most predictive features with the ones emerged from the classification
task (Table 5). We noticed that as in the classification task, when adding information to
the models the MAE decreases indicating that the model fits the data better. Also in this
case the gain of adding more information is relatively small with respect to the music
genres alone.

We visualised the most predictive features using again the Shap values (see Figure 2).
Interestingly, the christian music genre appears again as the most important predictor for
both the Binding and Individualising traits. The feature importance for the output of the
XGboost regressor, is in line with the feature significance obtained with the classification
approach. The same holds for all the moral foundations which are not depicted here for
spacing issues.

4 Discussions and Conclusions

Henry Wadsworth Longfellow wrote, “Music is the universal language of mankind.”
Contemporary research has found converging evidence that people listen to music that
reflects their psychological traits and needs and help express emotions, cultures, values
and personalities. In this paper, we analysed the less explored links between musical
preferences, demographics (age, gender, political views, and education level) and Moral
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Fig. 2. Features with the most impact on the XGBoost regression model output.

Foundations (MFT [9]). We applied both classification and regression models for moral
traits prediction. From classification results, it was inferred that MFT Binding was best
predicted with AUROC score 72%, whereas MFT individualising showed weaker results
with AUROC score 61%. While, for the regression task the lowest MAE was 3.0 for
the Individualising and 3.74 for Social Binding. In both approaches, the most impactful

features on inferring morality were christian music and age.

Moral foundations are strongly tied to political views; despite that, the musical fe

tures are more predictive than political leanings. Social binding is related to conservative
political views [8] - and in fact is predicted by christian, and country music. We notice
that people naturally express their moral values through the music they listen to. We
instinctively categorize objects, symbols, but also people, creating a notion of social
identity. According to the social identity theory members of a group will seek to find
negative aspects to other groups thus enhancing their self-image [21]. Such reasoning
reflects on a broad range of attitudes related to stereotype formations [19] but also as
we notice here to musical preferences. For instance, people higher in social binding
foundations tend to listen to country music which often expresses notions of patriotism.
Christian music is also a predictor of this superior foundation, which again fosters the
notion of belonging to a group. Across all experiments, Christian music emerged as the
most predictive genre. On the other hand, genres such as punk, and hip hop are known
to challenge the traditional values and the status quo, hence are preferred by people who
strongly value these aspects. Our findings suggest that musical preferences are quite
informative of deeper psychological attributes; still there is space for improvement. For
instance, we noticed that the care, fairness, and loyalty foundations are harder to predict.
To this end we aim to explore musical content analysis, for instance, incorporating
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linguistic cues, and the moral valence scores as proposed by Araque et al. [4, 5] on lyrics
to further improve the performance.

In future work we aim to delve deeper into the relation between music and morality,
and between music and other universal human values, by using passively collected digital
traits of music listening behaviours outside a laboratory setting and over a period of time
[2], while using self-reported surveys as a solid groundtruth. We will further investigate
the association between music listening preferences other psychological aspects such
as human values and emotions. Developing data-informed models will help unlock the
potential of personalised, uniquely tailored digital music experiences and communication
strategies [12, 1]. Predicting the moral values from listening behaviours can provide
noninvasive insights on the values or other psychological aspects of populations at a
large scale.
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Abstract. This paper presents an approach to extend an ontological database
concept aimed at the systematization of Electronic Music. Machine Learning
techniques are used to test the significance of empirical investigations on the
“output layer” of the production process, namely finished compositions of
Electronic Music. As an example, pieces from the era of 1950 to 1960 are being
examined, representing the aesthetics of Musique Concréte from Paris and
Elektronische Musik from Cologne. The experiments performed using state-of-
the-art techniques suggest the confirmation of measurable differences in the
musical pieces from different studios for electronic music that were motivated by
aesthetically divergent approaches.

Keywords: electronic music, musique concréte, Elektronische Musik, VGGish, random
forest

1 Introduction

1.1  Analysis and systematization of Electronic Music

Despite Electronic Music having existed for many decades, it is still lacking tools to
reliably systematize it, the most striking being a shortage of a clear terminology capable
of describing the phenomena themselves as well as the processes used to produce them.
In most cases, analogies to the strong and established terminologies of instrumental
music and sound production [1-5] are being taken as a solution to this problem, not
facing the problem that electronic sound production implies a fundamentally different
potential that needs to be addressed [6]. This issue is continued in the field of music
analysis: only a few attempts have been made to present universally valid tools that
allow musicologists to get significant insights into the structure of a piece of Electronic
Music. The most valuable source of information at hand is represented by [7, 8] and
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the recently revised EMDoku!, a huge database of Electronic Music that gives insights
into all the results of composing with electronically produced sound. A systematization
that comprises the conditions of the production of these results is yet to be found.
Recently, this topic has received more attention, for example, with regard to Musique
Concrete [9].

The PRESET research project, which was presented at CMMR 2019, has set out to
do basic work to make progress in this direction: a database is being put together
collating information from an in-depth survey of several studios for Electronic Music.
Exploring their informational resources and bringing them together will open new lines
of insight into the nature and relations of the processes involved. To address this issue,
it was decided to use a semantic web database with an underlying ontology as a
structural and terminological foundation [10]. In connection with the methods of actor-
network theory [11] and theories from the field of information systems [12, 13], the
working processes within the single studios as well as the connection in between them
will display a new perspective on the field.

1.2 Electronic Music in the 1950s: Musique Concréte and Elektronische Musik

The early period of electronic music was characterized by a vivid debate between two
quite different approaches of composing music within the context of an electronic
studio. The Musique Concreéte, which originated from Paris with its founder Pierre
Schaeffer and since 1958 organised in the Groupe de Recherches Musicales (GRM),
and the approach called Elektronische Musik (electronic music), which was pursued at
the West German Radio in Cologne, most prominently represented by its then leader
Herbert Eimert and Karlheinz Stockhausen. The Musique Concreéte originally set out
their experiments from recorded sound, thus integrating the production medium
(records and, later on, magnetic tape) within the very first steps of working on sound.
The repertoire of sound to create a piece was gained by very simple means of
manipulation such as cutting the tape, reversing it, changing its speed, and building
loops to generate rhythmic structures. This results in an empirical approach on dealing
with sound as a medium to work on, also leading to an elaborate theoretical concept of
the nature of sounds that Schaeffer formulated in his Traité des objets musicaux [14].
In Cologne, on the other hand, the idea was rather to construct the sound following a
pre-structured concept devised by the composer. This strategy, in turn, was strongly
connected to the concept of serial music, which favored a view on composition as a
formal organization of sets of parameters [15]. It is evident that this view found a
perfect fit in the new possibilities of sound creation and organization in an electronic
studio.

These two approaches, of course, did not exist separately from one another, and there
was a vital interest in each other’s musical results. The opposing views on concepts of
composition have been broadly discussed [16-18] and have led to the view that there
was a remarkable aesthetic difference in these approaches.

Apart from the discussion to what extent this holds true, we decided to take the
diverging concepts to an empirical test with the use of Machine Learning techniques.

! www.emdoku.de

78



Proc. of the 15th International Symposium on CMMR, Online, Nov. 15-19, 2021

2 Method

The methods presented in Section 1.1 basically represent a top-down model of
systematization. Connecting our efforts to the existing potentials of databases such as
EMDoku, we decided to add a bottom-up method of information retrieval in analyzing
datasets representing the actual “output” of the studios in Cologne and Paris within a
time window ranging from 1950 to 1960 — a period where the aesthetically divergent
approaches were most prominent [18]. In doing so, we will try to test methods of
empirical analysis and check them for their significance

The experiment consists in using a pre-trained Deep Neural Network (DNN) to
convert the audio samples into semantically meaningful embeddings and then training
a classifier to learn to identify material from both classes (GRM and WDR) using such
high-level embeddings as input features. This way, we propose to empirically assess
the existence of differences between recordings of such groups in purely acoustic
features. Although this approach does not indicate what those differences are, we intend
to pursue an indirect demonstration of their existence, for the only information provided
for classification is related to audio content.

The VGGish [19] model was used for the computation of the embeddings. This
network is based on the VGG [20] model, which is one of the most used DNN
architectures for image recognition, and produces embeddings of 128 samples. In order
to prepare the audio data to be processed by this network, first, the audio input signal
is collapsed to mono and band-limited to 8 kHz. Then, its spectrogram is computed
using the short-time Fourier transform, with a Hann analysis window of 25 ms and a
hop of 10 ms. After that, a mel-spectrogram with 64 frequency bands (125 - 7500 Hz)
is obtained by remapping the spectrogram time-frequency bins. This mel-spectrogram
is then framed into non-overlapping examples of 0.985 s, each example covering the
64 mel bands and 96 time frames of 10 ms each. Finally, this process produces the
embeddings for all audio files available by computing the network's outputs and stores
them in text files with the same names as their audio counterparts.

Then, the random forest algorithm was used to classify the embeddings produced.
To avoid having excerpts of the same musical piece both in the training and test sets by
treating the embeddings as independent samples, all the embeddings of each piece were
either assigned to the training set or to the test set. For this purpose, a random selection
of the pieces was performed with a probability of 70% of each piece being selected as
training data and 30% as test data. Since their variability in length is large (ranging
from less than a minute to several minutes), considerable differences occur in the actual
train/test proportion. This same classification experiment was repeated 10 times and
both the average and the standard deviation of the results were computed to illustrate
the classification performance. We used the implementation present in the “Scikit
learn”? framework for the random forest algorithm, set to train an ensemble of 400
decision trees and using its default settings. Smaller number of trees were tested and
provided slightly lower performance. Nevertheless, yielding high classification
performance and providing a detailed analysis regarding the classification problem
itself are not the objective of this paper.

2 scikit-learn.org
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In order to assess the performance, the majority vote of the embeddings within each
musical piece was taken to assign the piece's classification. This way, each piece
accounted for one sample, instead of their group of embeddings, i.e. pieces from which
more than 50% of the embeddings were correctly estimated are considered to be one
correctly estimated sample, despite its duration.

The actual lists of pieces used for the analysis were determined through the
following: as a first step, all output from both studios within the chosen time interval
was identified following the data resources provided by EMDoku, which represents the
most reliable resource available. After that, only works that purely consist of
electronically produced sounds were selected, thereby excluding all pieces that use
sound resources from outside the production processes in discussion. It was also
decided to exclude all sorts of functional compositions (e.g. music for radio plays)
within those lists to again ensure the validity of the data as examples of the two aesthetic
directions. The next step was to retrieve the actual audio material of the pieces. From
the list of pieces from the studio of the WDR, it was possible to obtain about 75% of
the pieces in question (57 files), making up a total duration of 3.5h. The examples
available from the GRM made up a fairly larger amount, with 94 files, totaling roughly
6h of audio material.

It should be noted that we only compared the audio content of these pieces with no
regard to spatialization, so from all the pieces, also those that exist in multichannel
versions, only mono-mixdown versions were used, due to the characteristics of the
architecture adopted for the classification task.

3 Results

The results obtained from this procedure are summarized in Table 1, which shows the
average and standard deviation for accuracy, precision, recall and F-measure. Despite
the small dataset available, the results suggest that the classifier was capable of
identifying differences in the acoustic features related to each aesthetic approach.

Table 1. Overall results.

Measure  Average  Std.
Accuracy 0.82 0.08
Precision 0.89 0.08
Recall 0.66 0.20
F-measure 0.74 0.14

A histogram that represents classification accuracy of the embeddings within each
musical piece, i.e. the proportion of correct votes for each class within each piece, is
illustrated in Figure 1. As can be observed, the distributions obtained have different
characteristics: the classifier was more successful in identifying excerpts from GRM,
with voting proportion more concentrated towards 100% than from WDR, which had
more diluted classification of the embeddings. In total, the GRM pieces were classified
as 82% GRM and 18% WDR, whereas the WDR pieces were estimated to be 47%
WDR and 53% GRM.
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Fig. 1: Histogram of classification accuracy within each musical piece.

The distributions obtained suggest that the classes may have a significant overlap,
as expected, but the classification system tended to have a bias towards the GRM class
despite all data imbalancement compensation techniques. This may indicate that the
GRM pieces might have less variation within the acoustic features of interest for the
classification system, whereas the WDR pieces may show a wider variety in such
dimensions. Besides, the pieces have a considerable amount of excerpts where the audio
material present may severely interfere in this analysis, like background noise or long
reverb tails. Nevertheless, the results are informative and serve the purpose of
empirically assessing the differences present in sound.

4 Conclusion

The experiments presented in this paper served the initial goal to widen the focus of a
database still under construction that aims at facilitating a valid and significant
systematization of Electronic Music. The Machine Learning techniques employed to
analyze the two specific sets of compositional results of studio work have displayed a
specific difference within these sets. A possible consequence of this outcome in
interaction with a future ontological database could be to check the technical equipment
used within the specific time interval for correspondences and differences, as well as to
investigate possible interdependencies of personnel involved. The inclusion of this
“bottom up”- method is therefore likely to provide valuable insights and to bring up
crucial questions to constantly improve the structure of the database as a whole.

The experimental setup was comprised of two different Machine Learning
techniques: a pre-trained deep neural network (VGGish), which uses as input mel-
spectrograms of the audio signal and outputs a sequence of high-level embeddings,
followed by a random forest classifier, which was trained to differentiate embeddings
from both classes under analysis. The musical pieces were then classified using the
criterion of majority vote of the classes estimated for their embeddings. The train and
test sets were randomly generated from piece selection and the experiment was
performed 10 times. No embeddings from the same musical piece were used for both
training and testing.
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Although the results are not particularly outstanding for a music genre classification
task (see Table 1), they do show that there are indeed noticeable differences in the
acoustic features extracted from the pieces in these groups. This provides empirical
evidence for what was only discussed theoretically in earlier studies.

It is worth mentioning that the VGGish network does not encompass long-term
temporal interdependencies of acoustic events, which are a fundamental part of music
structure and may reveal hidden patterns that could improve this intricate classification
task. For this purpose, we intend to expand this experiment in future work tackling this
specific problem by considering the whole sequence of embeddings using a different
downstream model, instead of purely classifying each one independently, or even using
a deep neural network that takes into account the temporal dimension.
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Abstract. A frequent problem when dealing with audio classification tasks is
the scarcity of suitable training data. This work investigates ways of mitigating
this problem by applying transfer learning techniques to neural network architec-
tures for several classification tasks from the field of Music Information Retrieval
(MIR). First, three state-of-the-art architectures are trained and evaluated with
several datasets for the task of speech/music classification. Second, feature repre-
sentations or embeddings are extracted from the trained networks to classify new
tasks with unseen data. The effect of pre-training with respect to the similarity of
the source and target tasks are investigated in the context of transfer learning, as
well as different fine-tuning strategies.

Keywords: Deep Learning, Neural Networks, Audio Classification, Speech Mu-
sic Classification, Transfer Learning, Embeddings, Music Information Retrieval

1 Introduction

Detection of speech and music in audio signals has been investigated in the field of
Music Information Retrieval (MIR) to automatically enrich audio archives with meta-
data. In addition to binary classification where only one of the classes is assumed to
be present at time more complex tasks like segmentation of speech or music as well
as multi-label classification where multiple classes can be present at time gained pop-
ularity. Despite the vast amount of research in this field [23, 12, 14,24, 13,5, 20, 4, 8],
speech/music classification (SMC) remains challenging in the presence of noise, the
involvement of chanting, or under low-quality recording conditions [15]. SMC was first
addressed with algorithms based on audio features (e.g., pitch, zero crossing rate) [23,
14, 12]. Recent approaches almost entirely focus on deep neural networks (DNN) that
directly learn to detect desired audio properties from input signals and its correspond-
ing annotations [13,2,5,20]. In an attempt to make audio classifiers more robust to
varying signal conditions and data scarcity, pre-trained feature representations (embed-
dings) from related tasks are tranferred to new tasks, so called Transfer Learning (TL),
to avoid exhaustive training from scratch [3, 6, 8,9, 2].

* This work has been supported by the German Research Foundation (BR 1333/20-1,
CA 2096/1-1)
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This work is divided in two stages. First, we analyze three state-of-the-art neural net-
work architectures for SMC and evaluate their robustness to varying signal conditions
by using a diversity of datasets. Here we aim to understand whether any of the three
architectures is more robust to varying signal characteristics when trained under com-
parable conditions. In the second stage of our work, audio embeddings are computed
from the three pre-trained architectures. These embeddings are then transferred to dif-
ferent MIR tasks. In this stage, we aim to understand how pre-trained models compare
to baseline networks trained from scratch, and whether a close relation of a downstream
task and pre-training task exhibit higher learning effects than general audio embeddings
like OpenL3 [3] that were not trained on a related MIR task at all.

2 Related Work

Current approaches for SMC mostly rely on deep neural networks (DNN) trained and
optimized using raw audio data or its time-frequency transform. The most popular net-
works for this task are convolutional neural networks (CNN) [12, 13,5, 20]. In 2015
Lidy et. al [13] used a CNN approach consisting of one convolutional layer followed
by a fully connected layer achieving 99.7% accuracy on binary classification of speech
and music at the MIREX competition [18]. The separate detection of both classes still
achieved 88.5% accuracy. The model proposed by Marolt [15] obtained an accuracy of
98% for SMC, and 92% for a 4-class classification for speech, solo singing, choir, and
instrumental music. The model uses a combination of convolutional layers followed
by residual layers. Besides the GTZAN [25] and MUSAN [24] datasets, additional field
recordings and traditional music from various libraries were included. In [4], differ-
ent architectures including DNNs, CNNs and recurrent neural networks were evaluated
for speech music detection. According to their findings, a model with six CNN lay-
ers performed best on AudioSet [21] with 86% accuracy for speech or music detection.
SwishNet [8] uses a set of one-dimensional convolutions with multiple skip connections
on Mel-Frequency Cepstral Coefficients (MFCCs). This model achieved 93% accuracy
on a 3-class detection task with speech, music, and noise and 99% accuracy for speech
detection using the MUSAN [24] dataset for training and GTZAN [25] for verification.
For performance comparison Hussain et al. used a Gaussian Mixture Model, a fully
connected neural network (FCN), and a transfer learning approach of the MobileNet ar-
chitecture [7] was used. The MobileNet embeddings worked best throughout the paper
followed by the proposed SwishNet architecture.

Choi et al. [2] showed that transfer learning can outperform traditional feature based
methods in many different MIR tasks as well as audio event detection (AED). In [3]
OpenL3 embeddings were trained on the task of audio-video correspondence in a self-
supervised manner inspired by [1] and subsequently transferred to the task of environ-
mental sound classification. On several AED datasets this approach outperformed other
TL embeddings based on VGG-like and SoundNet architectures. Grollmisch et al. [6]
verified the potential of OpenL3 for different MIR and industrial sound analysis tasks.
The embeddings consistently resulted in good classification performance while other
embeddings highly varied depending on the task. Kong et al. [11] proposed pre-trained
audio neural networks (PANN) for transfer learning. The authors introduce an input rep-
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resentation called Wavegram, a neural network based time-frequency-transformation.
A multi-layer CNN is connected to this input network and trained for audio tagging
on the AudioSet [21]. Subsequently, these embeddings were augmented by trainable
classifiers and applied to six different classification tasks including genre and acoustic
scenes classification, among others. In most of these tasks, the embeddings performed
better or similar to state-of-the-art approaches. The authors compared multiple networks
and depths as well as different positions for unfreezing of the pre-trained embeddings
concluding that a complete fine-tuning of all network parameters results in the highest
accuracy. To overcome the overfitting to one particular task Kim et al. [9] proposed
multi-task learning. During training, a CNN network structure is split at one stage in
the model into multiple branches, one for each task. All branches consist of the same
network architecture and where trained simultaneously. The last layers before the clas-
sifiers of each branch are concatenated and used as combined embeddings. Initially the
system was trained on the Million Song Database [16] for tempo estimation and song
similarity. The embeddings were evaluated on target tasks like genre classification or
music recommendation. Different branch positions in the network were evaluated con-
cluding that earlier branching results in better performance for the target tasks but also
in bigger networks with more computational costs.

3 Datasets

To get a better understanding of the performance of the evaluated architectures, four
datasets were used during training as depicted in table 1. The MUSAN dataset [24] and
the GTZAN dataset [25] consist of clearly distinguishable broadcast material of west-
ern music and speech. In addition, two more challenging ethnomusicology datasets are
included. The Marolt19 dataset was first introduced in [15]. Apart from the speech
class, choir, solo singing and instrumental music are combined into the *'music’ class for
training. Marolt 19 includes material from archives such as the British Library world
& traditional music collection, the French Centre of Scientific Research (CNRS), or the
Slovenian sound archive Ethnomuse. The ACMus Youtube Dataset (ACMusYT)?
was collected as part of the ACMus research project. > It consists of audio excerpts of

*https://zenodo.org/record/4870820
> ACMus project page: https://acmus-mir.github.io/

Table 1. Characteristics of the datasets used for training on speech/music classification (source
task) and for transfer learning tasks (target tasks).

Application Dataset ID Classes [Number of Files per class] Sample Rate Bit Depth Duration [min]

MUSAN Music [660], Speech [426], Noise [764] 16 kHz 16 6483
GTZAN  Music [64], Speech [64] 22 kHz 16 64
Trainin: Solo Singing [1512], Choir [1618],
® Maroltlg B el 129601, Speech [1284] 44 kHz 16 77
ACMusYT Speech [40], Music [35], A Cappella [40] 48 kHz 16 88
T T 7 7 7 S&ST T 7 Music[101], Speech [80] T ~ T T T T 2kHz ~ ~ 16~ T T 450 T
Transfer ACMusVF Male [46], Female [24] 96 kHz 24 26
ACMusIF 1 [43], 2 [42], 3 [43], 4 [21], 5+ [36] 96 kHz 24 65
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traditional Colombian music from the Andes region. The subset used in this work con-
sists of two classes: speech and music with vocals. The ’vocal-only’ class is not used
in these experiments for better separation during training. For TL experiments, the pre-
trained networks are subsequently fine-tuned with separate datasets. An established set
for speech music tasks is the Slaney & Scheirer dataset (S&S) [23] with content taken
from broadcast material. All 64 files of noise and mixed (speech/music) content are ex-
cluded before the evaluation. From the ACMus—MIR dataset [17], the Instrumental
Format Set (ACMusIF) was used. This set was created from traditional Andean
music recordings for the purpose of ensemble size classification. The goal of this task
is to classify music tracks as solo, duo, trio, quartet, and larger ensembles. Finally, the
ACMus Vocal Format Set (ACMusVF) is included.® It comprises Andean vo-
cal music (male and female singers) partly with accompaniment.

4 Methodology

4.1 Network Architectures

The INA (Institut National de 1’ Audiovisuel) approach [5] is a CNN-based network that
uses 68 frames of 21 MFCCs with a maximum frequency of 4 kHz as input representa-
tion to four 2D-convolutional layers followed by four dense layers with dropout. Each
of these layers are followed by batch normalization and a Re LU activation. The output
layer uses Softmax activation (see Figure 1 for details). INA achieved an average ac-
curacy of 92.6% at the 2018 MIREX [19] competition on music detection and 96.2%
on speech detection.

SwishNet is an architecture based on one-dimensional convolutional layers in com-
bination with residual and skip connections [8] (see Figure 2). As input, 16 frames of
22 MFCCs are extracted from one second audio snippets and used as 2D feature rep-
resentation. Classification results range from 93% frame-wise accuracy for 3 classes
(speech, music, noise) to 99% segment-wise accuracy for speech detection.

VGGe-like architectures are commonly used networks in many fields of deep learn-
ing [15, 3, 2]. The network illustrated in Figure 3 is inspired by [22]. Logarithmic Mel-
Spectrogram (MelSpec) is used as input from audio sampled at 22050 Hz. Frames of
2048 samples with 512 samples hop size are transformed to 128 mel band representa-
tion. A patch of 10 frames is fed to four convolutional layers with 32 kernels of size 3x3.

®https://zenodo.org/record/4791394
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Fig. 1. INA network architecture [5]. The green line indicates the freezing point of the intermedi-
ate fine-tuning strategy. The red line indicates the output point of the embedding vector.
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Fig. 2. SwishNet network architecture. The green line indicates the freezing point of the interme-
diate fine-tuning strategy. The red line indicates the output point of the embedding vector. Refer
to [8] for more details on the architecture.

Each layer is followed by batch normalization and ReLU activation. After every second
convolutional layer, MaxPooling is applied with a 3x3 window. Two fully connected
layers are added after flattening followed by the classifier with a So ftmaz activation.

OpenL3 embeddings are included as a state-of-the-art baseline. The 512 unit feature
vectors are extracted from the audio data with default parameters from [3]. These vec-
tors are normalized between 0 and 1 and used as input for a trainable neural classifier
consisting of a 128 unit dense layer followed by the final classifier with Sigmoid acti-
vation. As a second baseline, a simple DNN architecture is used. MelSpecs with equal
measures as for SwishNet and VGG-like models are input and passed through one dense
layer with 128 units and the output layer. The same structure is used for the appended
classifiers of the computed embeddings in Section 4.4 and hence gives an insight into
the learning effects of the preceded architectures. Adam is used as optimization and
Softmazx as activation function.

4.2 Input Representation

All datasets were normalized in a range of [-1, 1] in time domain and unified to a
sampling rate of 22050 Hz and 16 bits. The MelSpec representation with 128 bands
and 512 hop size is evaluated as input representation for all networks. Additionally the
original MFCC input representations of the SwishNet and INA approach are included
to check for side effects of the input adaption. The original VGG-like approach already

32

2

w0 -
512 o

Fig. 3. VGG-like network architecture. The green line indicates the freezing point of the interme-
diate fine-tuning strategy. The red line indicates the output point of the embedding vector.
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used MelSpecs. The Openl.3 embeddings create batches of features with a feature size
of 512 samples (see Section 4.1) from 100 ms audio frames.

4.3 Implementation Details and Metrics

In all experiments, 10% of the data is used for testing, and 10% for validation. All ex-
periments are repeated using five-fold cross-validation. All data is balanced by random
down-sampling. After transforming the input to MelSpec, it is normalized feature-wise
to zero mean in the range from -1 to 1 and concatenated to batches of 64 frames. Each
network is trained for 200 epochs with the option for early stopping if the validation
accuracy does not increase for 50 epochs. The Adam optimizer [10] with a learning
rate of 1072 is used for all architectures for best comparability to the original imple-
mentations. Results are presented as the mean accuracy over 5 cross-validation folds
with its standard deviation.

4.4 Transfer Learning Networks and Tasks

For transfer learning, the models are trained with a balanced combination of all four
training sets. Afterwards the output layers are removed from the trained networks (see
Section 4.1) and the remaining layers are fixed and used for embedding calculation. A
trainable classifier is appended consisting of a 128 unit dense layer and a dense output
layer matching the number of the target task classes. Three different freezing positions
for the trained models are evaluated. In the first strategy, only the classifier is trained
while the network weights remain fixed. The second strategy unfreezes the networks in
an intermediate position so the classifier and parts of the networks are fine-tuned. These
positions are illustrated green in Figures 1, 2, and 3, respectively. In a third strategy, all
network weights are unfrozen and fine-tuned along with the classifier. These strategies
do not apply for OpenL3 because of its baseline function. As transfer learning tasks, we
evaluate the following target tasks: (a) SMC with S&S dataset, (b) accompaniment de-
tection with ACMusVF dataset. The goal of this task is to distinguish music pieces with
instrumental accompaniment from vocal-only performances, (c) female vs male singer
classification on the ACMusVF dataset. We refer to this task as gender classification in
singing, (d) ensemble size classification on the ACMusIF set.

5 Results

5.1 Network Architectures Comparison

Figure 4 shows the mean file-wise and frame-wise results over all training sets for
each architecture. Results show that OpenL3 embeddings work well on all datasets
for SMC. Looking at the frame-wise accuracy, SwishNet is slightly below the remain-
ing two CNN-based architectures by around 3%. Figure 5 presents results for binary
SMC and a three-class task which includes noise as the third class. This is performed
for the MUSAN and Marolt 19 datasets where noise samples are included. Marolt19
appears to be the most challenging set due to the fact that it does not only consist of
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Fig. 4. Comparison of the mean frame-wise accuracy per architecture for speech/music classifi-
cation averaged over all training sets (MUSAN, GTZAN, Marlotl9, ACMusYT).

broadcast material unlike MUSAN. As expected, the accuracy drops for a more complex
task of three classes. The highest drop of 24.3 % occurs for INA in connection with
MelSpec input followed by the VGG-like model. For MUSAN the most significant drop
can be observed for the INA model in connection with MFCC input. The varying re-
sults indicate that the INA architecture might not be well suited for alternative tasks
in contrast to OpenL.3 which shows best robustness. Regarding the input representa-
tion no significant performance differences can be observed in Figure 4. Only a slight
improvement for MelSpecs is visible. Figure 5 confirms this trend as MelSpecs have a
slightly better performance on average. In conclusion MFCCs can increase performance
for specific tasks but MelSpecs have a more robust behavior in general hence MelSpec
is used for further experiments.

2 and 3 class performance
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Fig. 5. Comparison of frame-based accuracy for binary classification versus 3-class classification.
Results are shown for MUSAN (yellow) and Marolt19 (blue) datasets.

5.2 Transfer Learning

Results for all transfer experiments are presented in Table 2. Besides the three network
architectures (INA, SwishNet, and VGG-like), results for the OpenL.3 embeddings and
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the DNN baselines are shown. In general the resulting models tend to overfit during
fine-tuning due to the small training data.

Speech Music Classification with S&S: In this experiment, the target task for TL
was kept the same so models are only transferred to an unseen dataset. In Table 2 a learn-
ing effect from the pre-training can be observed for the Slaney & Scheirer dataset. In
detail embeddings from INA and VGG-like models can make better use of pre-training
and gain up to 3 % classification accuracy while the performance of SwishNet remains
at almost the same level. OpenlL.3 embeddings outperform all other models for this
dataset-task combination.

Table 2. Transfer learning results. Accuracy values are presented for fully frozen (Accr z), partly
trainable (intermediate) (Accrn), and the fully trainable embeddings (Accpr). Listed are the
results for each architecure using their pre-trained embeddings (Emb) as well as their original
network trained from scratch on the according task (Orig). In addition OpenL3 embeddings and
the two-layer DNN (see 4.1) are listed as baseline.

[ Task-Set-Combination | Model [Accrz [%][Accin [%][Accrr [%]]
INAgmp 988+ 1,4 | 97,6 2,1 | 851 +438
INAorig 93,8 + 3,0

VGG — likepmy| 974+ 1,5 | 979+ 19 | 889+ 1.6
VGG — likeorig 95,1 2,1

Speech Music on S&S SwishNetgmy | 923+£27 | 9304£24 | 9504+ 1,7

SwishNetorig - - 929 + 1,5
OpenL3gmb 99,2 + 0,4 - -
DN Npgseline - - 929+ 1,9
INAEmb 852+£56 | 825+9,1 | 90,8 £5.2
INAorig 80,2 £ 6,6

VGG — likegmp | 88574 | 949+32 | 92,7 +58
VGG — likeorig 92,74+ 49

Accompaniment on ACMus VF| g o Nep o Y1 815+ 46 | 85,1446 | 93.6 + 32

SwishNetorig - - 94,0 £+ 3,7
OpenL3gmp 99,6 + 0,5 - -
DN Npgseline - - 96,5 + 1,7

INAgmsb 700+7,7 | 473+£79 | 593 +7,6
INAoOrig 67,4 +7,0

VGG — likegmy | 71,8 £52 | 758 +£9,1 | 73,5£6,2
VGG — likeorig 73,6 + 8,1

Gender on ACMus VF SwishNetpmp | 726 £50 | 73,1 £5,1 | 783 +89
SwishNetorig - - 749 + 9,5
OpenL3gmb 723+ 9,6 - -
DN Npgsetine - - 72,6 + 10,3
INAgms 198 £56 |51 £ 102] 567 £45
INAGrig 488 +7.2

VGG — likepmy| 497 +50 | 513468 | 47,1 39
VGG — likeorig 57,9453

Ensemble Size on ACMus IF | "o oo Net oo | 46,7457 | 487463 | 543 + 54

SwishNetorig - - 56,3 £ 5,6
OpenL3gmb 76,2 + 4.4 - -
DNNbasel’ine - - 61,4 +53

Accompaniment detection on ACMusVF: For this task OpenL.3 again shows best
results and is followed by the VGG-like embeddings with a performance gap of around
11 %. Despite the close task relation to SMC no architecture overcomes the accuracy
of the plain DNN and hence no learning effect from TL is achieved in connection with
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this task. This is reinforced by the fact that for SwishNet and VGG-like architectures,
the original models perform better than their embedding counterparts.

Female/Male singer classification on ACMusVF: For this task SwishNet embed-
dings show best results closely followed by OpenL3 embeddings. The original networks
for each model show comparable or better performances compared to the fully frozen
embeddings indicating that no learning effect of pre-training is visible. Again the DNN
performs comparable to the best model refuting a benefit of the knowledge transfer.

Ensemble size classification on ACMus-MIR: All created embeddings perform
similar with nearly 50 % accuracy. The baseline architectures of VGG-like and Swish-
Net show better results when trained from scratch excluding the idea of a possible learn-
ing effect. This is confirmed by the plain DNN baseline that outperformed the embed-
dings by around 12 %. The usage of embeddings results in a inverse effect for this task.
Furthermore this experiment engages the most unrelated task relative to SMC in the set
of transfer tasks. The best results are achieved using the unrelated OpenL.3 embeddings
with 76.2 %. A file-wise evaluation of OpenL3 results in 84 % accuracy which confirms
the outcome from Grollmisch et al. [6].

Freezing strategies: Inspecting the last two rows of each embedding in table 2
gives insights to freezing strategies for the pre-trained networks. With more degree of
freedom, meaning more trainable layers, the accuracy tend to increase in most cases.
This trend is highly network-dependent and mainly applies to SwishNet models while
INA tends to be more unstable showing a higher fluctuation. VGG-like models perform
best in intermediate state.

6 Conclusions

This work examines the idea of transfer learning (TL) by creating new feature represen-
tations from one source task (pre-training), to use them as embeddings for several tar-
get MIR tasks. Three network architectures (INA, SwishNet, VGG-like) were initially
trained for SMC, and subsequently applied to four new classification tasks. Our exper-
iments show a slight dominance of the MelSpec as input representation over MFCCs
during training. No significant performance difference between the three architectures
is visible for the source task while Openl.3 embeddings consistently showed best SMC
accuracy. In comparison to the networks trained from scratch, pre-training results in a
slight improvement when used with an additional DNN classifier for the source task.
In the TL experiments, the direct combination of MelSpec input and the DNN clas-
sifier surpasses the embedding performance in some cases. These results suggest that
the learning effect of pre-training is not consistent over all experiments. Furthermore,
creating embeddings with tasks closely related to the target tasks show no evident ben-
efit compared to general audio embeddings such as OpenL3, which performed best in
most of the cases. A possible cause can be the self-supervised creation of these em-
beddings which inhabits limitless availability of training data. However, the amount of
training data used for pre-training the different embeddings is not considered in these
experiments and is left for future work.
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Abstract. Fingering decisions of string instruments and other instruments dif-
fer in that the former involves string assignments as well as finger assignments
while the latter is simply a matter of assigning fingers to notes. The present study
introduces a three-level model for fingering decision of string instruments to de-
scribe the structure of the problem and present problem settings of fingering deci-
sion based on the model. Our proposed three-level model provides clear perspec-
tive for some problem settings of fingering decision. We perform a simulation to
demonstrate the flexibility of the three-level model.

Keywords: fingering decision, string instruments, hidden Markov model(HMM)

1 Introduction

String instruments have overlaps in pitch ranges of their strings. As a consequence,
they have more than one way to play even a single note and thus numerous ways to
play a whole song. That is why the fingering decision for a given song is not always
an easy task for string players and therefore automatic fingering decision has been at-
tempted by many researchers. As for applications of HMM to fingering decision, Hori
et al.[1] applied input-output HMM to guitar fingering decision and arrangement, Na-
gata et al.[2] applied HMM to violin fingering decision, and Nakamura et al.[3] applied
merged-output HMM to piano fingering decision. Hori and Sagayama.[4] and Hori[5]
proposed extensions of the Viterbi algorithm for fingering decision.

The purpose of the present study is to point out that fingering decisions of string
instruments and other instruments differ in that the former involves string assignments
as well as finger assignments while the latter is simply a matter of assigning fingers to
notes. To describe the structure of fingering decision of string instruments, we intro-
duce a three-level model for string instruments and provide a unified way of looking
at variations of problem settings of fingering decision. Our proposed three-level model
provides clear perspective for some problem settings of fingering decision. We perform
a simulation to demonstrate the flexibility of our three-level model with fingering deci-
sion from score with finger numbers.

The rest of the paper is organized as follows. Section 2 reproduces the guitar finger-
ing decision model based on HMM][1]. Section 3 points out the difference in fingering
decision between string instruments and other instruments and introduces the three-
level model. Section 4 presents problem settings of fingering decision based on the
three-level model and Section 5 performs a simulation for one of the problem settings.
Section 6 concludes the paper.
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2 Fingering Decision Based on HMM

This section reproduces the guitar fingering decision model based on HMM][1] whose
output symbols are musical notes and hidden states are left hand forms, which corre-
sponds to the problem setting of Section 4.1 in this paper. Although we use the mono-
phonic case as an example to simplify the explanation in the following sections, the
results apply to the polyphonic case as well. See [1] for details of the polyphonic case.

2.1 HMM for fingering decision

To play a single note with a guitar, a guitarist depresses a string-fret pair p; on fretboard,

pi = (si, fi),

with a finger h; of the left hand and picks the string with the right hand. Therefore, a
left hand form ¢; for playing a single note can be expressed in a triplet g;,

q; = (Si7 fia h2)>

where s; = 1,...,6 is a string number (from the highest to the lowest), f; = 0,1,...
is a fret number, and h; = 1,2, 3,4 is a finger number of the player’s left hand (1,2,3
and 4 means the index, middle, ring and pinky fingers). The fret number f; = 0 means
an open string. The MIDI note number of the note played by the form ¢; is calculated
as follows where o, denotes the MIDI note number of the open string s;,

n(qi) = os, + fi-

In this formulation, fingering decision is cast as a decoding problem of HMM where a
fingering is obtained as a sequence of hidden states ¢; given a score as a sequence of
output symbols 7.

2.2 Transition and output probabilities

The difficulty levels of the moves from forms to forms are implemented in the probabil-
ities of the transitions from hidden states to hidden states; a small value of the transition
probability means the corresponding move is difficult and a large value means easy. We
assume that the four fingers of the left hand are always put on consecutive frets in this
paper for simplicity. This lets us calculate the index finger position (the fret number the
index finger is put on) of form ¢; as g(¢;) = f; — h; + 1. Using the index finger position,
we set the transition probability from hidden state g; to hidden state g; as

a;(dy) o QLdt exp (—W) X P (hj) €))

where o< means proportional and the left hand side is normalized so that the summation
with respect to j equals 1 for all ¢. The first term of the right hand side is taken from the
probability density function of the Laplace distribution that concentrates on the center
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and its variance d; is set to the time interval between the onsets of the (¢ — 1)-th note
and the ¢-th note. The second term Py (h;) corresponds to the difficulty level of the
destination form ¢; defined by the finger number £ ;.

As for the output probability, because all the hidden states have unique output sym-
bols in our HMM for fingering decision, it is 1 if the given output symbol ny is the one
that the hidden state ¢; outputs and 0 if the given output symbol is not,

1 (f g =n(g))
={o Gt 2nia) .

3 Three-Level Model for Fingering Decision of String Instruments

This section identifies the fundamental difference in fingering decision between string
instruments and other instruments, and then introduces a three-level model for fingering
decision of string instruments.

3.1 Note-tablature-form tree

For example, on the piano, there is only one key on the keyboard to press for each note,
and therefore fingering decision for a given sequence of notes is a matter of deciding
which finger to press on the key for each note (Fig.1, right). On the other hand, with
the guitar, each note corresponds to several string-fret pairs that play it, and in addi-
tion, we have a matter of which finger to press for each string-fret pair (Fig.1, left). In
other words, fingering decision for the piano is simply a matter of finger assignments,
while fingering decision for the guitar consists of string assignments followed by fin-
ger assignments. This situation with the guitar is illustrated in a tree diagram (Fig.1,
left) which we call “note-tablature-form tree.” While the tree diagram in Fig.1 is for a
monophonic note, we can draw the same diagrams for a polyphonic chord as well.

)

@:? l;4 ’
I\
; : Il

/NN 1]
o

Fig. 1. Note-tablature-form tree for guitar (left) and corresponding diagram for piano (right) il-
lustrating difference between string instruments and other instruments

3.2 Three-level model

To describe the above-explained situation with fingering decision of string instruments,
we introduce a three-level model for string instruments that consists of (1) note level,
(2) tablature level, and (3) form level (Fig.2). In relation to the notation introduced
in Section 2.1, the note level contains the information of n(g;), the tablature level
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pi = (s, fi), and the form level ¢; = (s;, f;, h;), respectively. In guitar scores, the
score and the tablature contains the information of the note level and the tablature level,
respectively. The finger numbers attached to the notes in the score, together with the
tablature, make up the information of the form level (see Section 4.3). From the view-
point of fingering decision based on HMM, the hidden states corresponds to the form
level and the setting of observed symbols varies depending on the problem settings as
we will see in the following sections.

Tablature Level | i = (84, fi)

Fig. 2. Three-level model for fingering decision of string instruments

4 Problem Settings Based on Three-Level Model

This section provides a unified way of looking at variations in problem settings of fin-
gering decision based on the three-level model for string instruments, taking the guitar
as an example. Fingering decision is cast as a decoding problem of HMM where the
setting of observed symbols varies depending on the problem settings. The first prob-
lem is a conventional one while the second and third ones obtain clear perspectives in
light of our proposed three-level model.

4.1 Fingering decision from score

In this problem setting, we generate a sequence of forms from a score, taking the note
level as the observed symbols and the form level as the hidden states (Fig.3, left). This
is a conventional and common problem setting in guitar fingering decision and has
been well studied including our previous study[l]. Here we note that the transition
probability reflecting the difficulty of the form transition can be defined only in the form
level and not in the tablature level, which we can see from the formula of transition
probability (1). Even when we only need to generate tablature, we have to perform
HMM decoding in the form level.

4.2 Fingering decision from tablature

In this problem setting, we generate a sequence of forms from a tablature, taking the
tablature level as the observed symbols and the form level as the hidden states (Fig.3,
right). Here we note that a tablature shows only string assignments for notes and does
not contain information of finger assignments, although it is easy for skilled guitarists
to find appropriate finger assignments and thus a fingering for a given tablature. An
application example of this problem setting is difficulty assessment of a tablature where
the difficulty is calculated as the reciprocal of the product of the transition probabilities
along the generated sequence of forms.
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Observed symbols

Tablature Level Tablature Level N Observed symbols

Fingering Decision from Score Fingering Decision from Tablature

Hidden states

Fig. 3. Two problem settings based on three-level model

4.3 Fingering decision from score with finger numbers

There are guitar scores without tablatures with finger numbers attached to some key
notes (Fig.4, left), which is enough for skilled guitarists to find a fingering for whole
phrase. From the viewpoint of our proposed three-level model, this is a case where
the whole information of the note level and the partial information of the form level
are given to generate a sequence of forms. The fingering decision in this case is im-
plemented as a decoding problem of HMM whose observed symbols are the notes and
hidden states are forms limited to ones with indicated finger numbers. We will see some
simulation results of this problem setting in the following section.

Tablature Level

Fig. 4. Score with finger numbers (left) and corresponding problem setting (right)

Partial information
R from Form Level

D

O
ol

5 Simulation

From the problem settings described in the previous section, we perform a simulation
of one presented in Section 4.3 to demonstrate the flexibility of our proposed three-
level model. The results for four scores are given in Fig.5 where the sequence of notes
(C major scale) is common to all and the finger numbers with red circles are given
while other finger numbers and the tablatures are generated by HMM. In the transition
probability (1), we set Py (1) = 0.4, Py (2) = 0.3, Py (3) = 0.2 and Py (4) = 0.1
which means forms using the index finger are the easiest and the pinky finger the most
difficult. From the results, we see that HMM generates appropriate fingerings for all
the scores minimizing change in the index finger position and that specifying a finger
number to one note can change fingerings for the rest seven notes.
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Fig. 5. Simulation results of fingering decision from score with finger numbers

6 Conclusion

We have pointed out the difference in fingering decision between string instruments and
other instruments and introduced a three-level model for fingering decision of string
instruments. Based on the model, we have provided a unified way of looking at three
variations in problem settings of fingering decision and demonstrated the flexibility of
our proposed three-level model using a simulation for fingering decision from score
with finger numbers. There are other instruments than string instruments for which we
have more than one way to play a single note. For such instruments, we can consider a
fingering model with a middle level corresponding to the tablature level of our model for
string instruments. We leave the extension of our three-level model to such instruments
to our future study.
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Abstract. Dynamics are one of the fundamental tools of expressivity in a perfor-
mance. While the usage of this tool is highly subjective, a systematic methodol-
ogy to derive loudness markings based on a performance can be highly beneficial.
With this goal in mind, this paper is a first step towards developing a methodol-
ogy to automatically transcribe dynamic markings from vocal rock and pop per-
formances. To this end, we make use of commercial recordings of some popular
songs followed by source separation and compare them to the karaoke versions
of the same songs. The dynamic variations in the original commercial recordings
are found to be structurally very similar to the aligned karaoke/multi-track ver-
sions of the same tracks. We compare and show the differences between tracks
using statistical analysis, with an eventual goal to use the transcribed markings
as guiding tools, to help students adapt with a specific interpretation of a given
piece of music. We perform a qualitative analysis of the proposed methodology
with the teachers in terms of informativeness and accuracy.

Keywords: Vocal Performance Assessment, Music Education, Loudness Mea-
surement, Dynamics Transcription

1 Introduction

Musical expression is an integral part of any performance. The subjective nature of this
term makes it difficult to identify “whether the expressive deviations measured are due
to deliberate expressive strategies, musical structure, motor noise, imprecision of the
performer, or even measurement errors” [1]. While the choice of expressions used may
vary from performer to performer and also from performance to performance, deriving
the expressions used in a specific interpretation of a performance can offer significant
advances in the realm of music education. Not only can it help students learn from a
specific musical piece, insights about the variations in expressions can add to possible
set of choices that one can employ during a performance.

With the advent of online practice tools like music minus one, audio accompani-
ments, users have a wide variety of mediums to chose to practice with [2]. However,
most of these tools are limited to pitch and rhythm correctness, offering little or no in-
sight about the expressive variations of the performance. In this work, we focus on de-
riving the dynamic variations of vocal rock and pop performances via loudness feature
extracted from the audio recordings. The goal of this paper is to develop a methodology
to extract and compare the dynamic variations of similar pieces of vocal performances
that can lay the foundation of transcribing dynamic markings of vocal performances.
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This overall idea can be broken down into a set of 2 questions that we intend to
address through our work.

(i) Given a mix, is it possible to transcribe dynamics using the source separated
voice signal with the same accuracy as would be achieved when the vocal stem of the
mix is available?

(i1) Can we analyze the similarities and differences between two loudness curves in
order to provide feedback on dynamics?

In order to address the first question, we use state of the art source separation al-
gorithms to extract vocal tracks from mixes followed by loudness computation, and
compare them to the loudness curves of the vocal stems available for the same mix. To
address the second question, we have conducted a preliminary experiment comparing
the loudness curves of the source separated commercial mixes with multi-track karaoke
versions with vocal stems. Overall the structure of the paper is as follows. Section 2
presents some fundamental information about the kind of loudness scales and the study
of dynamics in music information retrieval. In section 3, we describe a methodology
of the proposed approach followed by preliminary investigation of the comparison of
loudness curves in section 4. The influence of vocal source separation on loudness com-
putation is also presented in section 4.

In section 5, we conduct a case study where the dynamic variations of the two
versions (karaoke and commercial) have been analyzed by a teacher to give feedback
followed by section 6 with conclusions and future work.

2 Background and Related Work

Significant work has been done to model performance dynamics by measuring the loud-
ness variations [3] with a conclusion that the variations in dynamics are not linear. Sev-
eral measurement techniques have been defined to measure the loudness of signals.

2.1 Loudness Measurement Scales

Of the scales available for loudness measurement, some are inspired by the subjective
psychoacoustic phenomenon of human ear, while others are objective in terms of mea-
surement. The most commonly used measurement is the dBFS scale, or loudness unit
full scale. The more recently adopted industry standard is the EBUR scale [9]. For our
analysis, we make use of the sone scale, which is based on psychoacoustic model, and
compare our results to RMS values computed from the signals directly.

Sone Scale This scale is inspired by the psychoacoustic concept of equal loudness
curves, with the measurement being linear i.e. doubling of the perceived loudness dou-
bles the sone value [10]. While the phon scale is more closely associated with dB scale,
a phon value of 40 translates to 1 sone. The relationship between phons and sons can

be modelled using the equation:
{2<L40>/10 if P >=40.
= 2.642 (D

(L/40) , P <4o0.
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RMS RMS or root mean square is the square root of the mean square of the amplitude
of the signal.
RMS = sqrt((x? + z2...22)/N) (2)

2.2 Dynamics in Music Information Retrieval

Work on measurement of dynamics has been typically centered around Western Classi-
cal piano performances, incorporating dynamics as an expressive performance parame-
ter that can vary across performers/performances [4]. Kosta et al. [5] used change-point
detection algorithm to measure dynamic variations from audio performances and com-
pared them to the markings in the score. Further, they applied machine learning ap-
proaches like decision trees, support vector machines (SVM), artificial neural networks
[6] to predict loudness levels corresponding to the dynamic markings in the score. They
found that the loudness values can be predicted relatively well when trained across
recordings of similar pieces, while failing when trained across pianists’ other perfor-
mances.

Another approach to model dynamics is using linear basis functions to encode struc-
tural information from the score [8]. Each of the “basis function” stand for one score
marking like stacatto, crescendo, the active state being a representation of the expres-
sive marking present in the score and vice-versa. Chacén et al. [7] carry out a large
scale evaluation of expressive dynamics on piano and orchestral music using linear and
non-linear models.

3 Methodology

A diagram of the proposed methodology is presented in Figure 1. In case solely the mix
is available, the input audio mix is passed to a source separation algorithm, U-Net [16]
to get the separated vocal track. Thereafter, we extract the loudness from the separated
vocal track or vocal stem using the sone scale and RMS as described earlier. The loud-
ness extraction for the sone scale is carried out in the same way as proposed by Kosta
et al [5] in their analysis. Each of the loudness curves are normalized by dividing with
the max value for the rendition in order to carry out a fair relative comparison between
different renditions. This step makes sure that only the relative values are compared
and not the absolute ones. Finally, we apply peak picking operation to get a range of
overall dynamics that can be further processed to map to specific dynamics based on
musicological knowledge. It is to be noted that we limit the current set of experiments
to comparison of loudness curves, leaving the actual mapping of loudness values to
musically meaningful values as future work.

4 Experiments

4.1 Data Curation

We have primarily used three sources of data for our analysis:
(i) Commercial official recordings of rock and pop songs
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w H U-Net H Isolated Vocal Track ’
Map to dynamics Smoothening Extract Loudness Curve ’

Fig. 1: Methodology for extracting loudness from a mix.

(i) Custom karaoke tracks from the site' exactly replicating the official tracks

(iii) Musdb dataset to validate the efficacy of source separation algorithm

To evaluate the impact of singing voice source separation we use the musdb dataset
containing 150 multi-track songs. For the commercial recordings, we conducted a pre-
liminary investigation with 7 popular tracks shown in Table 1.

For the commercial popular recordings, only the mixes are available while for the
karaoke versions, we have access to all the stems. This leads to 3 sources of data for the
analysis of the same tracks - source separated vocals from the commercial mix (CSS),
source separated vocals from the karaoke mix (KSS), vocal stems from the karaoke
stems (KSV).

4.2 Experimental Setup

As mentioned above in the methodology, we first apply source separation using the
spleeter implementation of UNet [13] to separate the mix into two stems - vocal track
and the accompaniment. This step is skipped in case vocal stems are available for anal-
ysis. We use a block size of 512 samples or 11 ms with a hanning window, and a hop
size of 256 samples or 5.5 ms. We follow the same block and hop size for the sone scale
as well as RMS values. For loudness extraction using the sone scale, we use ma_sone
function in Elias Pampalk’s Music Analysis toolbox [11] in Matlab. The RMS values
are extracted using the essentia library [15]. We further apply smoothening operation
using two methods - “loess” with smooth function in matlab (based on locally weighted
non-parametric regression fitting using a 2nd order polynomial) and exponential mov-
ing average [19][EMA]. Based on experimental testing, we use a span of 5% for the
loess method. With the exponential moving average smoothening, we use an attack of
2 ms and release time of 20 ms. In the current set of experiments, the RMS smoothen-
ing is carried out using EMA methodology, and sone scale is smoothened using loess
method. This operation was followed by peak picking operation to get a sense of overall
dynamics followed. The peak picking parameters were experimentally set to a threshold
of 0.1, and a peak distance of 1.2 seconds. We used the madmom library [14] for peak
picking operation with RMS, and findPeaks function in maltab with sone scale loud-
ness extraction. Figure 2 and Figure 3 show an example of computation of loudness

! https://www.karaoke-version.com/
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value using Sone scale and RMS respectively, followed by smoothening operation and
detected peaks for the song ‘Don’t know why’ by Norah Jones.

; Loudness curve using Sone scale
T T T I I
— Sone Values
—— Smoothened sone values
+  Peaks

0 20 40 60 80 100 120 140 160 180 200

Fig.2: Loudness using sone scale for Don’t Know Why by Norah Jones

Loudness curve using RMS

—— RMS
Smoothened RMS using EMA
e Peaks

Fig. 3: Loudness using RMS values for Don’t Know Why by Norah Jones
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4.3 Results

Overall Loudness Comparison between Renditions In order to compare the structure
similarity of the loudness curves, we computed Pearson Correlation Coefficient of the
smoothened curves extracted from the audio signals. Table 1 shows the values observed
for each of the 7 songs. As evident from the table, most values are greater than 0.8,
and in the case of comparing source separated version with the clean karaoke version,
most values are greater than 0.9 indicating the robustness of the methodology with the
pre-processing step of applying source separation.

Local dynamics To account for local dynamic changes, we compute the differences be-
tween consecutive peaks and derive a histogram from all the local differences. Further,
the computed peak differences for each song are combined together for all songs from
the same source i.e. commercial source separated, karaoke source separated and karaoke
stem vocal. Thereafter, we use the non-parametric Kolmogorov-Smirnov 2 sample test
which fits the properties of our data. This test is computed between each pair of the 3
histograms corresponding to the 3 sources. We find that for each of the comparisons,
the p-value was 0.99 indicating no statistically significant differences between the his-
togram plots. These results are in line with our initial claim that the overall structure of
the local dynamics changes as reflected in the loudness curves. These analysis results
were the same for the histograms obtained using RMS values and sone values.

Table 1: Chosen songs and Pearson Correlation Coefficients for smoothened loudness
sone curves

Song Name Artist CSS, KSV KSS, KSV CSS, KSS
Skyfall Adele 0.867 0.994 0.931
Torn Natalie Imbruglia 0.701 0.946 0.800
Fade into you Mazzy Star 0.943 0.887 0.897
Imagine John Lennon 0.889 0.981 0.440
Say you won’t let go James Arthur 0.955 0.835 0.800
Don’t know why Norah Jones 0.866 0.997 0.870
Son of a preacher man Dusty Springfield 0.701 0.957 0.669

Global Dynamic Range The global dynamic range of each of the songs is computed
using difference in max peak and min peak extracted from the smoothened loudness
curve. As indicated in Table 2, the observed global dynamic range based on peak values
are mostly similar in the case of karaoke source separated version and the karaoke vocal
stem version with the exception of the song ‘Son of a preacher man’ with RMS values,
and ‘Fade into you’ with sone values.

Outlier Analysis With a deeper analysis of the song ‘fade into you’, we find that there
is a guitar section in the original song that becomes an artifact in the source separation
output. This leads to a peak being wrongly detected increasing the overall dynamic
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Table 2: Observed dynamic range with RMS and sone values

RMS Sone
Song Name CSS KSS KSV CSS KSS KSV
Skyfall 0.460 0.156  0.176 0.503  0.477 0.489
Torn 0.092 0.138  0.206 0.355 0.199 0.213
Fade into you 0.144 0.195 0.167 0.306 0354 0.182
Imagine 0.172  0.149 0.171 0320 0.287 0.271
Say you won’t let go 0.187 0.138  0.142 0.272  0.190  0.199
Don’t know why 0256 0.222 0.217 0.526  0.489 0.462
Son of a preacher man 0.150 0.227 0.371 0275 0339  0.295

range for both CSS and KSS resulting from peak detection. A high value of Pearson
Correlation Coefficient between CSS and KSS as compared to KSS and KSV reflects
from the fact that both of them have source separation as a pre-processing step, and
both the versions contain similar artifacts.

4.4 Influence of voice source separation on loudness computation

In order to validate the efficacy of the source separation algorithm prior to using it for
evaluating dynamics, we computed the Pearson Correlation of the smoothened loudness
curves extracted from the mix with the smoothened loudness curves of the vocal stem
tracks available with the musdb dataset [17].

As evident from the histogram in Figure 4, 138 values of the 149 songs evaluated
are greater than 0.90. There are 6 songs with values between 0.80 and 0.90, and only
1 song with a value less than 0.50. The mean of the values is 0.960 and the standard
deviation is 0.081. These results look promising to be able to use source separation as
a prior step for dynamics analysis.

Outliers The song with the lowest value of correlation coefficient “PR-Happy Daze”
contains a lot of instrumental music without much vocal component. Hence, the output
of source separation algorithm is mostly artifacts. The song “Skelpolu - Resurrection”
with a correlation coefficient of 0.58 has similar challenges.

5 Discussion

Work on transcription of dynamics is a challenging task for several reasons. One of the
primary reasons being lack of sufficiently annotated data for singing voice to validate
the efficacy of these algorithms.

Hence, in order to validate our approach, we conducted a case study with the song
‘Don’t know why by Norah Jones’ where we asked a teacher with 6 years of Western
singing teaching experience to compare the two tracks and provide feedback on the
dynamic changes. Following is the feedback that we received from the teacher for some
phrases of both tracks.
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Pearson Correlation Distribution with Musdb Dataset
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Fig. 4: Distribution of Pearson Correlation Coefficient applied to smoothened loudness
curves of musdb dataset

I waited ’til I saw the sun

For Norah’s Version:”Norah’s dynamics change over the line. “I’ve” is ‘mp’. “Waited
till” starts as ‘mf’, which gradually drops down to ‘mp’ as she ends the line, can be seen
as a diminuendo.” For the Backing Track Version: "Dynamically, the singer is ‘mf’
throughout. This sounds like the kind of vocal take where the original vocals have been
compressed one too many times.”

I don’t know why I didn’t come

For Norah’s Version: ”Dynamically between an ‘mp’ and ‘mf’”. For the Backing
Track Version: ”’Once again at an ‘mf’. Vocals have definitely been compressed to sound
at the same level consistently”.

Case Study Results As evident from the first phrase, the teacher claimed that Norah
Jones used a wider range of dynamics in her performance as compared to the cover
version. Figure 5 shows the loudness curve of the cover version along with Norah Jones
version using the sone scale. The classified dynamic markings for the two renditions
are shown in the same plot. As compared to Norah’s version of the same song, there is
definitely a relatively very low difference between consecutive initial peaks in the cover
version. The global dynamic range observed in the results section for this song is also
in line with this observation. Similar results can be seen with RMS computation.

Challenges Despite having noisy artefacts and interferences from other instruments,
state of the art source separation may be adequate for music analysis, when extracting
dynamics. However, the peak detection method may not be robust enough to different
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Loudness curve using Sone scale - cover version
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Loudness curve using Sone scale - Norah Jones version
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Fig. 5: Loudness using sone scale for Don’t Know Why

performances and require calibration. Smoothing should be done w.r.t the tempo of the
song.

While our initial case study showed some promising results, scaling such a system
is still a very cumbersome task. Apart from the limitations with data and annotations,
we are constrained by the knowledge that can help us realize the right granularity of
transcription. For example, expressive markings like crescendo and diminuendo are
associated with phrase boundaries [18], but the reverse might not be true. We would
need collaborative efforts from multiple fronts in order to take advantage of the recent
advances in the field of audio signal processing.

6 Conclusion and Future Work

We presented a methodology to extract dynamics from a performance using loudness as
a feature. In the current investigation, we found that it is possible to use these loudness
metrics to reach a level of relative changes that can in turn be mapped to dynamics.
In future, we intend to discretise these relative values to map them to musically mean-
ingful terms that can be used for providing the right feedback to students. Apart from
that, in order to realize the overall goal of transcription, we intend to continue annota-
tions of popular songs and further apply data driven approaches of machine learning to
automatically derive the dynamic markings.

We also intend to apply the current methodology to student recordings to validate
the efficacy of the system, and if the approach can be used to provide feedback on dy-
namics to students.
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Abstract. We present here a pipeline for the automated discovery of repeated
motifs in audio. Our approach relies on state-of-the-art source separation, pre-
dominant pitch extraction and time series motif detection via the matrix profile.
Owing to the appropriateness of this approach for the task of motif recognition
in the Carnatic musical style of South India, and with access to the recently re-
leased Saraga Dataset of Indian Art Music, we provide an example application
on a recording of a performance in the Carnatic raga, Ritigaula, finding 56 dis-
tinct patterns of varying lengths that occur at least 3 times in the recording. The
authors include a discussion of the potential musicological significance of this
motif finding approach in relation to the particular tradition and beyond.

Keywords: Musical Pattern Discovery, Motif Discovery, Matrix Profile, Pre-
dominant Pitch Extraction, Carnatic Music, Indian Art Music

1 Introduction and Related Work

Short, recurring melodic phrases, often referred to as “motifs”, are important building
blocks in the majority of musical styles across the globe. The automatic identification
and annotation of such motifs is a prominent and rapidly developing topic in music
information retrieval [1-4], playing a significant role in music analysis [5-7], segmen-
tation [8—10] and development of musical theory [11-13]. No consensus exists on how
this is best achieved, and indeed difficulty and differences in evaluation make it hard to
contextualize the efficacy of a method outside of the task to which it is applied. A thor-
ough review and comparison of approaches that handle symbolic music representations
can be found in [1] and [4] however in this paper we focus on the much more common
case of music without notation, extracting repeated motifs from audio.

Difficulty in working with raw audio for this task stems from the incredibly dense
amount of information contained in audio signals, simultaneously clouding that which
we might be interested in and providing a heavy workload for computational meth-
ods. A common method of reducing this complexity is to extract from the raw audio
an object or feature set that captures the aspect of the music most relevant to the type
of motif desired, and to subsequently compute some self-similarity metric between all
subsequence pairs to group or connect similar sections [14, 15]. This could take the
form of audio features such as Mel-frequency cepstral coefficients (MFCC) [16, 17]
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or chroma [15, 18], rhythmic onsets [19,20] or monophonic pitch [21,22]. When per-
formed successfully, it is the latter that provides an abstraction with the most informa-
tion pertaining to the melody in audio. And with more recent advances in both pre-
dominant pitch extraction [23] and time series motif detection [24], we are afforded
the opportunity to revisit the approach of predominant pitch extraction/self-similarity
in computationally feasible time on relatively large time scales.

Certain musical styles are particularly suitable for this type of analysis: for exam-
ple, those for which automated transcription is not yet possible, and where the symbolic
to sonic gap is such that musically salient units may sometimes be better characterised
by segments of continuous time series pitch data than by transcriptions. This is the
case in Indian Art Music JAM), including Hindustani and Carnatic styles. Automated
motif detection in these traditions is a limited but active area of research. In the case
of Carnatic music, svaras (notes) are coarticulated (merged) through gamakas (orna-
ments) [25]. This characteristic provides particular challenges for processes involving
automated segmentation, and can even mean that different Carnatic musicians’ annota-
tions of the same phrase may vary subtly in places, with different degrees of symbolic
detail being possible. This leaves motif detection through time series pitch data as one
of the most viable and popular approaches to finding meaningful melodic units in the
style [26-28].

In this paper we demonstrate an approach for the automated discovery of repeated
motifs in audio: state-of-the-art source separation [31], predominant pitch extraction
using the Melodia algorithm [23] and ultra-fast means of time series motif detection
via the matrix profile [24]. Owing to the appropriateness of this approach for the task
of motif recognition in Carnatic music, and with access to the recently released Saraga
Dataset of IAM [32], we provide an example application, applying these existing meth-
ods in this tradition. All code is available on GitHub? with a Jupyter notebook walk
through of both the generalized and IAM-specific code.

2 Dataset

We demonstrate our approach on an example recording from the Saraga dataset [32].
Developed within the framework of the CompMusic project* and openly available for
research, Saraga comprises two IAM collections, representing the Hindustani and Car-
natic traditions. Both collections comprise several hours of music with accompanying
time-aligned expert annotations and relevant musical (e.g. raga, tala, form) and edito-
rial (e.g. artist, work, concert) metadata. In this work we focus on a performance taken
from the Carnatic collection, 168 of which contain separate microphone recordings of:
lead vocal, background vocal (if present), violin, mridangam and ghatam (if present).
However, since these tracks are recorded from live performance, the multi-track audios
in the dataset contain considerable background leakage, i.e., are not completely isolated
from the other instruments.

We access and interact with the Saraga dataset through the mirdata library [33]. This
tool provides easy and secure access to the canonical version of the dataset, while load-

3https://github.com/thomasgnuttall/carnatic-motifs—cmmr—-2021/
‘nttps://compmusic.upf.edu/
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ing and managing the dataset contents (audio, annotations and metadata) to optimize
our research pipeline.

3 Methodology

The process consists of two stages (1) the extraction from audio of a vocal pitch track,
which consists of a one-dimensional time series representing the main melodic line of
the performance and (2) the use of self-similarity euclidean distance to identify likely
candidates for repeated motifs in the main melodic line.

3.1 Predominant Pitch Extraction

The quality and consistency of the predominant pitch extraction is paramount. Given
the shortage of training data and algorithms to extract the vocal pitch from Carnatic
music signals, our raw audio recording is subject to three processing steps to arrive at a
one dimensional time series of pitch values representing the main melodic line.

Isolating the Vocal Source Where possible we use the vocal track recording for anal-
ysis (still containing leakage from other instruments). If this is not available, the mix
is used. For the isolation of voice from the background instruments (both in mixed and
vocal tracks), we use Spleeter, which is a deep learning based source separation library
which achieves state-of-the-art results on automatically separating vocals from accom-
paniment [31].

Extracting the Predominant Pitch Curve We use one of the most popular signal pro-
cessing based algorithms for predominant pitch estimation from polyphonic music sig-
nals, the Melodia algorithm [23], applying an equal-loudness filter to the signal before-
hand to encourage a perceptually relevant extraction. In the majority of studies attempt-
ing this task in IAM, Melodia has achieved consistent and viable results [26,28-30,34].
We use a time-step of 2.9ms for the extraction.

Post-Processing Two post-processing steps are applied to the pitch track. (1) Gap in-
terpolation, linearly interpolating gaps of 250ms or less [36], typically caused by glottal
sounds and sudden decrease of pitch salience in gamakas and (2) Gaussian smoothing
with a sigma of 7, softening the curve and providing a more natural, less noisy shape.

The final extracted pitch track is a time-series of n pitch values, P = p1, pa, ..., Dp.

3.2 Repeated Motif Discovery

To search P for regions of similar structure we look for groups of subsequences that
have a low euclidean distance between them. The subsequence length to search for, m
is a user-defined parameter of the process.
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Matrix Profile An efficient method of inspecting the euclidean distances between pair-
wise combinations of subsequences in a time series is the matrix profile [24]. Given a
time series, 7', and a subsequence length, m, the matrix profile returns for each subse-
quence in 7', the distance to its most similar subsequence in 7. The STAMP algorithm
computes the matrix profile in impressive time by exploiting the overlap between sub-
sequences using the fast Fourier transform, requiring only one parameter, subsequence
length, m [24]. We use the non-z-normalized distance, since we are interested in match-
ing subsequences identical in shape and y-location (i.e. pitch).

The matrix profile is therefore defined as M P = ed;,eds, ..., edy,_,, Where ed;
is the regular euclidean distance between the subsequence of length m beginning at
element ¢ and its nearest neighbour in P.

Exclusion Mask To ensure that only subsequences of interest are considered, a mask
of subsequences in P to exclude is computed by applying a series of exclusion functions
to each subsequence. These exclusion functions are informed by expert understanding
of what constitutes a relevant motif in the tradition. Explicitly, the exclusion mask,
EM = emq,emy,...,em, where em; is either 1 or 0, yes or no, does the subsequence
satisfy any of the following:

— Too silent - more than 5% percent of the subsequence is 0 (i.e. silence)

— Minimum gap - subsequence contains a silence gap of 250ms or more

— Too stable - in more than 63% of cases for a rolling window of 100, the average
deviation of pitch from the average is more than 5 Hz. This step is designed to
exclude subsequences with too many long held notes - although musically relevant,
not interesting from a motific perspective. A similar approach is taken in [26]

Subsequences that correspond to a mask value of 1 are not considered valid and not
returned.

Identifying Motif Groups The search for groups of repeated motifs begins by looking
for a parent subsequence; those in P that have the lowest euclidean distance to another
subsequence i.e. minimas in M P. The assumption being that if these subsequences
have one very near neighbour, i.e. they are repeated once, then they are more likely to
occur multiple times; a similar approach is used in [27].

For a candidate parent motif, we use the MASS similarity search algorithm [24] to
calculate the non-normalised euclidean distance to every other subsequence in the pitch
track, returning those that satisfy the requirements set by the parameters; top/N, maxOcc,
minQOcc and thresh. Algorithms 1 and 2 describe the process and parameters.

Output The returned motif groups are arrays of start indices in P. The number of
groups and occurrences in each is influenced by the topN, minOcc and maxOcc pa-
rameters.
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Algorithm 1 Identify groups of motifs with low inter-group euclidean distance

1: procedure GETMOTIFGROUPS

2: MP <+ matrix profile array from Matrix Profile

3 P < pitch sequence array from Predominant Pitch Extraction
4: EM < exclusion mask array from Exclusion Mask

5: m <— pattern length

6: topN <— maximum number of groups to return

7 maxOcc <— maximum number of occurrences per group

8 minOcc < minimum number of occurrences per group

9: thresh <— maximum length-normalised distance of occurrence to parent
10:
11: MP[where(EM == 1)] < oo
12: nGroups < 0
13: allMotifs < array()
14: while nGroups < topN

15: ix + argmin(M P) > get parent index
16: if MP[ix] == oo > entire sequence searched
17: break

18: motifs < GETOCCURRENCES (ix, P, m, maxQOcc, thresh, EM)

19: if Length(motifs) < minOcc > discard, not enough significant matches
20: continue

21: for mtf in motifs > motifs is an array of indices
22: MP[mif - m : mif + m] < oo > clear part of array to avoid future discovery
23: nGroups < nGroups + 1

24: allMotifs < append motifs

25: return allMotifs > array of motif groups, each motif group an array of start indices

26: end procedure

Algorithm 2 Identify other occurrences of parent motif in P using MASS

1: procedure GETOCCURRENCES

2 ix < index of parent sequence to query

3 P <+ pitch sequence array from Predominant Pitch Extraction

4 m <— pattern length

5: maxOcc < maximum number of occurrences to return

6 thresh <— maximum length-normalised distance of occurrence to parent
7 EM < exclusion mask array from Exclusion Mask

8

9: parent < Plix : ix + m]

10: stmass <— MASS(parent, P) > array of distances between parent and all subsequences
11: stmass[where(EM == 1)] < oo

12: nOccs < 0

13: allOces < array()

14: while nOccs < maxOcc

15: ix < argmin(stmass)

16: if stmass(ix]/m > thresh > length normalised distance
17: break > cease search, no significant patterns remain
18: stmass[ix - m : ix + m] < oo

19: allOccs < append ix

20: return allOccs > array of occurrence start indices for this parent

21: end procedure
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Fig. 1: Overlaid pitch contour plots of three returned motif groups. The y-axis of each
figure represents cents above the tonic (S) of 196Hz, divided into the discrete pitch
positions defined in Carnatic music theory for this raga - S, R2, G2, M1, P, D2, N2 [35].
R2 is two semitones (200 cents) above the tonic, S, and G2 is one semitone (100 cents)
above R2, and so on. The oscillatory melodic movement that can be seen cutting across
these theoretical pitch positions is typical of the style, illustrating the challenges of
locating individual 'notes’, either through expert annotations or automatically.

4 Results

We include the results of our process applied to a performance by the Akkarai Sisters of
a composition titled Koti Janmani®, by the composer Oottukkadu Venkata Kavi, which

3 https://musicbrainz.org/recording/5falbcfd-c71le-4d6f-940e-
Ocef6fbc2a32
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is set in the Carnatic raga, Ritigaula. The process is run for pattern lengths of 2,3,4,
5 and 6 seconds using parameters; topN = 15, minOcc = 3, maxOcc = 20. The
parameter thresh is selected by subjective evaluation of the patterns returned in one
motif group, choosing a value beyond which consistency is lost.

The number of significant motif groups found for 2, 3, 4, 5 and 6 second runs is 15,
15, 11, 11 and 4 respectively. For the code and full results we refer the reader to the
GitHub repository. Fig. 1a, 1b and 1c present the pitch plots associated with the top 5
occurrences of an example pattern in the 2, 4 and 5 seconds groups respectively.

5 Discussion

Due to the current lack of complete (i.e., saturated) ground truth annotations in the
Saraga dataset, it is difficult to evaluate our application systematically. Creation of such
annotations are ongoing as part of this project. In the meantime, however, the nature of
the task and size of the results allow us to reflect on the coherency between patterns and
their significance within the tradition.

The high degree of similarity between patterns returned within groups is obvious
even to listeners who have no experience of the style, and can be appreciated from
both the audio and pitch plots. This similarity is unsurprising, we choose a modest
euclidean distance threshold and the process returns motifs that correspond to areas of
pitch that are very similar by this measure. It is however a testament to the quality and
consistency of the pitch extraction process and audio in the Saraga dataset [32], both
resources not yet available in previous works. And more impressive still, also unseen
in other works, is that these results can be achieved relatively quickly on a personal
machine requiring little user input: pattern length, m and euclidean distance threshold,
thresh (easily tuned in negligible time). This is due to the efficiency of the STAMP and
MASS algorithms in computing the all pairs self-similarity [24].

Of course, we are more interested in whether the consistent results identified by a
process like ours have the potential to contribute to ongoing musicological endeavours
of pattern recognition, documentation and music analysis in the Carnatic tradition. Ini-
tial evaluation by the third author, who has expertise in the tradition [25], suggests that
that there is a high degree of musical similarity across the returned patterns in each
group. At least the first few matches, and often all of the patterns, in each group would
be considered by experts in the style to consist of the same motifs, or motif fragments.
Some of the returned groups contain whole motifs that are particularly important for
this raga; Ritigaula is one of the Carnatic ragas that is expressed through a number of
characteristic motifs, sometimes referred to as pidi (catch-phrases), saficaras or prayo-
gas [35].

Two examples of particularly musically significant motifs returned can be seen in
Fig. 1a and Fig. 1b. Fig. 1a shows a frequently recurring phrase in this composition
that includes the motif “npnn” (expressed here in sargam notation, which is used by
practitioners to represent Carnatic svaras). The fact that 11 results are returned for this
pattern (only five of these are illustrated for the sake of visual clarity) points to both
the significance of the phrase in this composition, and also the importance of the mo-
tif “npnn” in the rdaga [35]. Fig. 1b consists of another recurring characteristic phrase
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“ssndmmnns”, which is amongst the annotations of characteristic phrases identified by
Carnatic musicians for the Saraga dataset [32].

The musicological applications of this process as it stands are limited to some extent
by the fact that some of the matches returned are not full motifs, but rather are partial:
for example, including part of one motif and then part of another (e.g., 5-second motif
0) or not returning the full motif (e.g., 5-second motif 1).° Segmentation at musically
meaningful junctures such as silences or articulation of consonants should improve this.
Another problem is that the process currently often returns multiples of the same motif,
but with different top matches (e.g., 5-second motif groups 9 and 10). Lastly, it is clear
that we need to evaluate the results against comprehensive annotations of all motifs in
the performance,’ to discover whether the process returns a good number of the total
number of occurrences.

One interesting feature is that the process, in addition to returning precise matches
of motifs, also identifies those that are similar but not identical. This could be particu-
larly useful in a style such as Carnatic music which often employs a theme and variation
structure, where phrases are repeated many times but with various elaborations. We can
see an example of this returning of non-identical, but musically closely-related motifs
in Fig. Ic where 4 motifs are returned, with two of them including a variation in the
period between 0.5-1.5 seconds. Any process used to identify motifs in Carnatic mu-
sic for musicological purposes would ideally show this degree of flexibility, in order to
provide useful and meaningful results. Finally, considering the significance of recurring
motifs in the vast majority of musical styles, it seems likely that this process would be
musically relevant beyond the specific case of Carnatic music.

6 Further Work

Close scrutiny of the results offers potential lines of improvements; variable length
motif detection could help capture full motifs rather than partial motifs, so too could
more tradition-specific exclusion rules such as consonant onset detection, which should
aid in further constraining the search to whole motifs due to the fact that the style is
melismatic, with several svaras often sung to one syllable. An essential next step for the
continuation of this work is the development of a more empirical evaluation framework
of comprehensive ground truth motifs created in collaboration with expert performers
of the tradition. We also recognize that to facilitate inter-recording discovery, a dynamic
time warping distance measure or tempo normalisation might be necessary.

7 Conclusion

We hope to have demonstrated the effectiveness of predominant pitch extraction and
matrix profile/self-similarity for the task of repeated motif identification and annotation
in audio. We highlight its potential for these tasks in Carnatic music, a tradition where

® Please refer to the Github repository for results not plotted here.
7 Although some motifs are annotated in the Saraga dataset, these annotations are not complete.
Such annotating is extremely time consuming and must be done by practitioners of the style.
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transcriptions into symbolic representation can show variance, and so where working
directly with time series pitch data from audio is a more promising approach to motif
identification. Alongside this document we provide the code and full results for the
application to this tradition as well as to example audio from other musical styles.
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